ﻻ يوجد ملخص باللغة العربية
We calculate the atmospheric neutrino fluxes in the energy range $100$ GeV -- $10$ PeV with the use of several known hadronic models and a few parametrizations of the cosmic ray spectra which take into account the knee. The calculations are compared with the atmospheric neutrino measurements by Frejus, AMANDA, IceCube and ANTARES. An analytic description is presented for the conventional ($ u_mu+bar u_mu$) and ($ u_e+bar u_e$) energy spectra, averaged over zenith angles, which can be used to obtain test data of the neutrino event reconstruction in neutrino telescopes. The sum of the calculated atmospheric $ u_mu$ flux and the IceCube best-fit astrophysical flux gives the evidently higher flux as compared to the IceCube59 data, giving rise the question concerning the hypothesis of the equal flavor composition of the high-energy astrophysical neutrino flux. Calculations show that the transition from the atmospheric electron neutrino flux to the predominance of the astrophysical neutrinos occurs at $30-100$ TeV if the prompt neutrino component is taken into consideration. The neutrino flavor ratio, extracted from the IceCube data, does not reveal the trend to increase with the energy as is expected for the conventional neutrino flux in the energy range $100$ GeV - $30$ TeV. A depression of the ratio $R_{ u_mu/ u_e}$ possibly indicates that the atmospheric electron neutrino flux obtained in the IceCube experiment contains an admixture of the astrophysical neutrinos in the range $10-50$ TeV.
The IceCube experiment has recently reported the observation of 28 high-energy (> 30 TeV) neutrino events, separated into 21 showers and 7 muon tracks, consistent with an extraterrestrial origin. In this letter we compute the compatibility of such an
The flux of high-energy neutrinos passing through the Earth is attenuated due to their interactions with matter. Their transmission probability is modulated by the neutrino interaction cross section and affects the arrival flux at the IceCube Neutrin
Neutrinos are unique cosmic messengers. Present attempts are directed to extend the window of cosmic neutrino observation from low energies (Sun, supernovae) to much higher energies. The aim is to study the most violent processes in the Universe whic
High-energy neutrinos from decays of mesons, produced in collisions of cosmic ray particles with air nuclei, form unavoidable background for detection of astrophysical neutrinos. More precise calculations of the high-energy neutrino spectrum are requ
Discovering neutrino decay would be strong evidence of physics beyond the Standard Model. Presently, there are only lax lower limits on the lifetime $tau$ of neutrinos, of $tau/m sim 10^{-3}$ s eV$^{-1}$ or worse, where $m$ is the unknown neutrino ma