ترغب بنشر مسار تعليمي؟ اضغط هنا

The Katz-Klemm-Vafa conjecture for K3 surfaces

298   0   0.0 ( 0 )
 نشر من قبل R. P. Thomas
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We prove the KKV conjecture expressing Gromov-Witten invariants of K3 surfaces in terms of modular forms. Our results apply in every genus and for every curve class. The proof uses the Gromov-Witten/Pairs correspondence for K3-fibered hypersurfaces of dimension 3 to reduce the KKV conjecture to statements about stable pairs on (thickenings of) K3 surfaces. Using degeneration arguments and new multiple cover results for stable pairs, we reduce the KKV conjecture further to the known primitive cases. Our results yield a new proof of the full Yau-Zaslow formula, establish new Gromov-Witten multiple cover formulas, and express the fiberwise Gromov-Witten partition functions of K3-fibered 3-folds in terms of explicit modular forms.



قيم البحث

اقرأ أيضاً

We propose a definition of Vafa-Witten invariants counting semistable Higgs pairs on a polarised surface. We use virtual localisation applied to Mochizuki/Joyce-Song pairs. For $K_Sle0$ we expect our definition coincides with an alternative definit ion using weighted Euler characteristics. We prove this for deg $K_S<0$ here, and it is proved for $S$ a K3 surface in cite{MT}. For K3 surfaces we calculate the invariants in terms of modular forms which generalise and prove conjectures of Vafa and Witten.
We generalize the multiple cover formula of Y. Toda (proved by Maulik-Thomas) for counting invariants for semistable coherent sheaves on local K3 surfaces to semistable twisted sheaves over twisted local K3 surfaces. As applications we calculate the $SU(r)/zz_r$-Vafa-Witten invariants for K3 surfaces for any rank $r$ defined by Jiang for the Langlands dual group $SU(r)/zz_r$ of the gauge group $SU(r)$. We generalize and prove the S-duality conjecture of Vafa-Witten of K3 surfaces for all higher ranks based on the result of Tanaka-Thomas on the $SU(r)$-Vafa-Witten invariants.
365 - D. Maulik , R. Pandharipande , 2010
We study the virtual geometry of the moduli spaces of curves and sheaves on K3 surfaces in primitive classes. Equivalences relating the reduced Gromov-Witten invariants of K3 surfaces to characteristic numbers of stable pairs moduli spaces are proven . As a consequence, we prove the Katz-Klemm-Vafa conjecture evaluating $lambda_g$ integrals (in all genera) in terms of explicit modular forms. Indeed, all K3 invariants in primitive classes are shown to be governed by modular forms. The method of proof is by degeneration to elliptically fibered rational surfaces. New formulas relating reduced virtual classes on K3 surfaces to standard virtual classes after degeneration are needed for both maps and sheaves. We also prove a Gromov-Witten/Pairs correspondence for toric 3-folds. Our approach uses a result of Kiem and Li to produce reduced classes. In Appendix A, we answer a number of questions about the relationship between the Kiem-Li approach, traditional virtual cycles, and symmetric obstruction theories. The interplay between the boundary geometry of the moduli spaces of curves, K3 surfaces, and modular forms is explored in Appendix B by A. Pixton.
189 - S. Katz , A. Klemm , 2014
For a K3 surface S, we study motivic invariants of stable pairs moduli spaces associated to 3-fold thickenings of S. We conjecture suitable deformation and divisibility invariances for the Betti realization. Our conjectures, together with earlier cal culations of Kawai-Yoshioka, imply a full determination of the theory in terms of the Hodge numbers of the Hilbert schemes of points of S. The work may be viewed as the third in a sequence of formulas starting with Yau-Zaslow and Katz-Klemm-Vafa (each recovering the former). Numerical data suggest the motivic invariants are linked to the Mathieu M_24 moonshine phenomena. The KKV formula and the Pairs/Noether-Lefschetz correspondence together determine the BPS counts of K3-fibered Calabi-Yau 3-folds in fiber classes in terms of modular forms. We propose a framework for a refined P/NL correspondence for the motivic invariants of K3-fibered CY 3-folds. For the STU model, a complete conjecture is presented.
The Yau-Zaslow conjecture determines the reduced genus 0 Gromov-Witten invariants of K3 surfaces in terms of the Dedekind eta function. Classical intersections of curves in the moduli of K3 surfaces with Noether-Lefschetz divisors are related to 3-fo ld Gromov-Witten theory via the K3 invariants. Results by Borcherds and Kudla-Millson determine the classical intersections in terms of vector-valued modular forms. Proven mirror transformations can often be used to calculate the 3-fold invariants which arise. Via a detailed study of the STU model (determining special curves in the moduli of K3 surfaces), we prove the Yau-Zaslow conjecture for all curve classes on K3 surfaces. Two modular form identities are required. The first, the Klemm-Lerche-Mayr identity relating hypergeometric series to modular forms after mirror transformation, is proven here. The second, the Harvey-Moore identity, is proven by D. Zagier and presented in the paper.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا