ﻻ يوجد ملخص باللغة العربية
We have explored prevailing modes of galaxy growth for redshifts z ~ 6-14, comparing substantially overdense and normal regions of the universe, using high-resolution zoom-in cosmological simulations. Such rare overdense regions have been projected to host high-z quasars. We demonstrate that galaxies in such environments grow predominantly by a smooth accretion from cosmological filaments which dominates the mass input from major, intermediate and minor mergers. We find that by z ~6, the accumulated galaxy mass fraction from mergers falls short by a factor of 10 of the cumulative accretion mass for galaxies in the overdense regions, and by a factor of 5 in the normal environments. Moreover, the rate of the stellar mass input from mergers also lies below that of an in-situ star formation (SF) rate. The fraction of stellar masses in galaxies contributed by mergers in overdense regions is ~12%, and ~33% in the normal regions, at these redshifts. Our median SF rates for ~few X 10^9 Mo galaxies agrees well with the recently estimated rates for z ~ 7 galaxies from Spitzers SURF-UP survey. Finally, we find that the main difference between the normal and overdense regions lies in the amplified growth of massive galaxies in massive dark matter halos. This leads to the formation of >= 10^{10} Mo galaxies due to the ~100-fold increase in mass during the above time period. Such galaxies are basically absent in the normal regions at these redshifts.
We use high-resolution zoom-in cosmological simulations of galaxies of Romano-Diaz et al., post-processing them with a panchromatic three-dimensional radiation transfer code to obtain the galaxy UV luminosity function (LF) at z ~ 6-12. The galaxies a
We present a high spatial-resolution HST/NICMOS imaging survey in the field of a known protocluster surrounding the powerful radio galaxy MRC1138-262 at z=2.16. Previously, we have shown that this field exhibits a substantial surface overdensity of r
We search for high-redshift (z>4.5) X-ray AGNs in the deep central (off-axis angle <5.7) region of the 7 Ms Chandra Deep Field-South X-ray image. We compile an initial candidate sample from direct X-ray detections. We then probe more deeply in the X-
We show that the use of red colour as the basis for selecting candidate high redshift dusty galaxies from surveys made with Herschel has proved highly successful. The highest redshift such object, HFLS3, lies at z=6.34 and numerous other sources have
We use the semi-analytical model of galaxy formation GALFORM to characterise an indirect signature of AGN feedback in the environment of radio galaxies at high redshifts. The predicted environment of radio galaxies is denser than that of radio-quiet