ترغب بنشر مسار تعليمي؟ اضغط هنا

The environment of radio galaxies: A signature of AGN feedback at high redshifts

89   0   0.0 ( 0 )
 نشر من قبل David Izquierdo-Villalba
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use the semi-analytical model of galaxy formation GALFORM to characterise an indirect signature of AGN feedback in the environment of radio galaxies at high redshifts. The predicted environment of radio galaxies is denser than that of radio-quiet galaxies with the same stellar mass. This is consistent with observational results from the CARLA survey. Our model shows that the differences in environment are due to radio galaxies being hosted by dark matter haloes that are ~1.5 dex more massive than those hosting radio-quiet galaxies with the same stellar mass. By running a control-simulation in which AGN feedback is switched-off, we identify AGN feedback as the primary mechanism affecting the build-up of the stellar component of radio galaxies, thus explaining the different environment in radio galaxies and their radio-quiet counterparts. The difference in host halo mass between radio loud and radio quiet galaxies translates into different galaxies populating each environment. We predict a higher fraction of passive galaxies around radio loud galaxies compared to their radio-quiet counterparts. Furthermore, such a high fraction of passive galaxies shapes the predicted infrared luminosity function in the environment of radio galaxies in a way that is consistent with observational findings. Our results suggest that the impact of AGN feedback at high redshifts and environmental mechanisms affecting galaxies in high halo masses can be revealed by studying the environment of radio galaxies, thus providing new constraints on galaxy formation physics at high redshifts.



قيم البحث

اقرأ أيضاً

We present the clustering properties of a complete sample of 968 radio sources detected at 1.4 GHz by the VLA-COSMOS survey with radio fluxes brighter than 0.15 mJy. 92% have redshift determinations from the Laigle et al. (2016) catalogue. Based on t heir radio-luminosity, these objects have been divided into two populations of 644 AGN and 247 star-forming galaxies. By fixing the slope of the auto-correlation function to gamma=2, we find r_0=11.7^{+1.0}_{-1.1} Mpc for the clustering length of the whole sample, while r_0=11.2^{+2.5}_{-3.3} Mpc and r_0=7.8^{+1.6}_{-2.1} Mpc (r_0=6.8^{+1.4}_{-1.8} Mpc if we restrict our analysis to z<0.9) are respectively obtained for AGN and star-forming galaxies. These values correspond to minimum masses for dark matter haloes of M_min=10^[13.6^{+0.3}_{-0.6}] M_sun for radio-selected AGN and M_min=10^[13.1^{+0.4}_{-1.6}] M_sun for radio-emitting star-forming galaxies (M_min=10^[12.7^{+0.7}_{-2.2}] M_sun for z<0.9). Comparisons with previous works imply an independence of the clustering properties of the AGN population with respect to both radio luminosity and redshift. We also investigate the relationship between dark and luminous matter in both populations. We obtain <M*>/M_halo<~10^{-2.7} for AGN, and <M*>/M_halo<~10^{-2.4} in the case of star-forming galaxies. Furthermore, if we restrict to z<~0.9 star-forming galaxies, we derive <M*>/M_halo<~10^{-2.1}, result which clearly indicates the cosmic process of stellar build-up as one moves towards the more local universe. Comparisons between the observed space density of radio-selected AGN and that of dark matter haloes shows that about one in two haloes is associated with a black hole in its radio-active phase. This suggests that the radio-active phase is a recurrent phenomenon.
We investigate the kinematic properties of a large (N=998) sample of COSMOS spectroscopic galaxy members distributed among 79 groups. We identify the Brightest Group Galaxies (BGGs) and cross-match our data with the VLA-COSMOS Deep survey at 1.4 GHz, classifying our parent sample into radio/non-radio BGGs and radio/non-radio satellites. The radio luminosity distribution spans from $L_Rsim2times10^{21}$ W Hz$^{-1}$ to $L_Rsim3times$10$^{25}$ W Hz$^{-1}$. A phase-space analysis, performed by comparing the velocity ratio (line-of-sight velocity divided by the group velocity dispersion) with the galaxy-group centre offset, reveals that BGGs (radio and non-radio) are mostly ($sim$80%) ancient infallers. Furthermore, the strongest ($L_R>10^{23}$ W Hz$^{-1}$) radio galaxies are always found within 0.2$R_{rm vir}$ from the group centre. Comparing our samples with HORIZON-AGN, we find that the velocities and offsets of simulated galaxies are more similar to radio BGGs than to non-radio BGGs, albeit statistical tests still highlight significant differences between simulated and real objects. We find that radio BGGs are more likely to be hosted in high-mass groups. Finally, we observe correlations between the powers of BGG radio galaxies and the X-ray temperatures, $T_{rm x}$, and X-ray luminosities, $L_{rm x}$, of the host groups. This supports the existence of a link between the intragroup medium and the central radio source. The occurrence of powerful radio galaxies at group centres can be explained by Chaotic Cold Accretion, as the AGN can feed from both the galactic and intragroup condensation, leading to the observed positive $L_{rm R}-T_{rm x}$ correlation.
110 - P.N.Best , L.M.Ker , C. Simpson 2014
This paper presents the first measurement of the radio luminosity function of jet-mode (radiatively-inefficient) radio-AGN out to z=1, in order to investigate the cosmic evolution of radio-AGN feedback. Eight radio source samples are combined to prod uce a catalogue of 211 radio-loud AGN with 0.5<z<1.0, which are spectroscopically classified into jet-mode and radiative-mode (radiatively-efficient) AGN classes. Comparing with large samples of local radio-AGN from the Sloan Digital Sky Survey, the cosmic evolution of the radio luminosity function of each radio-AGN class is independently derived. Radiative-mode radio-AGN show an order of magnitude increase in space density out to z~1 at all luminosities, consistent with these AGN being fuelled by cold gas. In contrast, the space density of jet-mode radio-AGN decreases with increasing redshift at low radio luminosities (L_1.4 < 1e24 W/Hz) but increases at higher radio luminosities. Simple models are developed to explain the observed evolution. In the best-fitting models, the characteristic space density of jet-mode AGN declines with redshift in accordance with the declining space density of massive quiescent galaxies, which fuel them via cooling of gas in their hot haloes. A time delay of 1.5-2 Gyr may be present between the quenching of star formation and the onset of jet-mode radio-AGN activity. The behaviour at higher radio luminosities can be explained either by an increasing characteristic luminosity of jet-mode radio-AGN activity with redshift (roughly as (1+z) cubed) or if the jet-mode radio-AGN population also includes some contribution of cold-gas-fuelled sources seen at a time when their accretion rate was low. Higher redshifts measurements would distinguish between these possibilities.
We present the largest ever sample of radio polarization properties for $z>4$ sources, with 14 sources having significant polarization detections. Using wideband data from the Karl G. Jansky Very Large Array, we obtained the rest-frame total intensit y and polarization properties of 37 radio sources, nine of which have spectroscopic redshifts in the range $1 le z le 1.4$, with the other 28 having spectroscopic redshifts in the range $3.5 le z le 6.21$. Fits are performed for the Stokes $I$ and fractional polarization spectra, and Faraday rotation measures are derived using Rotation measure synthesis and $QU$ fitting. Using archival data of 476 polarized sources, we compare high redshift ($z>3$) source properties to a $15,$GHz rest-frame luminosity matched sample of low redshift ($z<3$) sources to investigate if the polarization properties of radio sources at high redshifts are intrinsically different than those at low redshift. We find a mean of the rotation measure absolute values, corrected for Galactic rotation, of $50 pm 22,$rad m$^{-2}$ for $z>3$ sources and $57 pm 4,$rad m$^{-2}$ for $z<3$. Although there is some indication of lower intrinsic rotation measures at high-$z$ possibly due to higher depolarization from the high density environments, using several statistical tests we detect no significant difference between low and high redshift sources. Larger samples are necessary to determine any true physical difference.
In the current picture of cosmology and astrophysics, the formation and evolution of galaxies is closely linked to that of their dark matter haloes. The best representation of this galaxy-dark matter halo co-evolution is the M* - Mhalo relation. In t his study we investigate how the radio-mode feedback from active galactic nuclei (AGN) affects the M* - Mhalo relation at redshifts 0.08 < z < 1.53. We use a set of 111 radio-selected AGN at 3 GHz VLA-COSMOS within the X-ray galaxy groups in the COSMOS field. We compare these results to the ones of 171 star-forming galaxies (SFGs), using the theoretical relation of Moster et al. (2013). We find that AGN agree within 1% with the Moster et al. (2013) relation, SFGs show an offset of 37%, suggesting that the radio-mode feedback from AGN at a median redshift of ~ 0.5 still plays a significant role in the M* - Mhalo relation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا