ﻻ يوجد ملخص باللغة العربية
In this paper, we prove that any $C^{1}$-regular Hamiltonian stationary Lagrangian submanifold in a symplectic manifold is smooth. More broadly, we develop a regularity theory for a class of fourth order nonlinear elliptic equations with two distributional derivatives. Our fourth order regularity theory originates in the geometrically motivated variational problem for the volume functional, but should have applications beyond.
In this paper, we consider Hessian equations with its structure as a combination of elementary symmetric functions on closed Kahler manifolds. We provide a sufficient and necessary condition for the solvability of these equations, which generalize th
In this article, we consider a gauge-theoretic equation on compact symplectic 6-manifolds, which forms an elliptic system after gauge fixing. This can be thought of as a higher-dimensional analogue of the Seiberg-Witten equation. By using the virtual
In this paper we consider the Monge-Amp`{e}re type equations on compact almost Hermitian manifolds. We derive a priori estimates under the existence of an admissible $mathcal{C}$-subsolution. Finally, we also obtain an existence theorem if there exists an admissible supersolution.
We derive estimates relating the values of a solution at any two points to the distance between the points, for quasilinear isotropic elliptic equations on compact Riemannian manifolds, depending only on dimension and a lower bound for the Ricci curv
We prove a version of differential Harnack inequality for a family of sub-elliptic diffusions on Sasakian manifolds under certain curvature conditions.