ترغب بنشر مسار تعليمي؟ اضغط هنا

Stable two-dimensional dumbbell stanene: a quantum spin Hall insulator

541   0   0.0 ( 0 )
 نشر من قبل Peizhe Tang
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We predict from first-principles calculations a novel structure of stanene with dumbbell units (DB), and show that it is a two-dimensional topological insulator with inverted band gap which can be tuned by compressive strain. Furthermore, we propose that the boron nitride sheet and reconstructed ($2times2$) InSb(111) surfaces are ideal substrates for the experimental realization of DB stanene, maintaining its non-trivial topology. Combined with standard semiconductor technologies, such as magnetic doping and electrical gating, the quantum anomalous Hall effect, Chern half metallicity and topological superconductivity can be realized in DB stanene on those substrates. These properties make the two-dimensional supported stanene a good platform for the study of new quantum spin Hall insulator as well as other exotic quantum states of matter.



قيم البحث

اقرأ أيضاً

Stanene was proposed to be a quantum spin hall insulator containing topological edges states and a time reversal invariant topological superconductor hosting helical Majorana edge mode. Recently, experimental evidences of existence of topological edg e states have been found in monolayer stanene films and superconductivity has been observed in few-layer stanene films excluding single layer. An integrated system with both topological edge states and superconductivity are higly pursued as a possible platform to realize topological superconductivity. Few-layer stanene show great potential to meet this requirement and is highly desired in experiment. Here we successfully grow few-layer stanene on bismuth (111) substrate. Both topological edge states and superconducting gaps are observed by in-situ scanning tunneling microscopy/spectroscopy (STM/STS). Our results take a further step towards topological superconductivity by stanene films.
The realization of the quantum spin Hall effect in HgTe quantum wells has led to the development of topological materials which, in combination with magnetism and superconductivity, are predicted to host chiral Majorana fermions. However, the large m agnetization ($sim$ a few tesla) in conventional quantum anomalous Hall system, makes it challenging to induce superconductivity. Here, we report two different emergent quantum Hall effects in HgTe quantum wells dilutely alloyed with Mn. Firstly, a novel quantum Hall state emerges from the quantum spin Hall state at an exceptionally low magnetic field of $sim 50$ mT. Secondly, tuning towards the bulk $p$-regime, we resolve multiple quantum Hall plateaus at fields as low as $20 - 30$ mT, where transport is dominated by a van Hove singularity in the valence band. These emergent quantum Hall phenomena rely critically on the topological band structure of HgTe and their occurrence at very low fields make them an ideal candidate for interfacing with superconductors to realize chiral Majorana fermions.
We observe an unusual behavior of the spin Hall magnetoresistance (SMR) measured in a Pt ultra-thin film deposited on a ferromagnetic insulator, which is a tensile-strained LaCoO3 (LCO) thin film with the Curie temperature Tc=85K. The SMR displays a strong magnetic-field dependence below Tc, with the SMR amplitude continuing to increase (linearly) with increasing the field far beyond the saturation value of the ferromagnet. The SMR amplitude decreases gradually with raising the temperature across Tc and remains measurable even above Tc. Moreover, no hysteresis is observed in the field dependence of the SMR. These results indicate that a novel low-dimensional magnetic system forms on the surface of LCO and that the Pt/LCO interface decouples magnetically from the rest of the LCO thin film. To explain the experiment, we revisit the derivation of the SMR corrections and relate the spin-mixing conductances to the microscopic quantities describing the magnetism at the interface. Our results can be used as a technique to probe quantum magnetism on the surface of a magnetic insulator.
171 - M. Bianchi , F. Song , S. Cooil 2015
The high index (441) surface of bismuth has been studied using Scanning Tunnelling Microscopy (STM), Angle Resolved Photoemission Spectroscopy (APRES) and spin-resolved ARPES. The surface is strongly corrugated, exposing a regular array of (110)-like terraces. Two surface localised states are observed, both of which are linearly dispersing in one in-plane direction ($k_x$), and dispersionless in the orthogonal in-plane direction ($k_y$), and both of which have a Dirac-like crossing at $k_x$=0. Spin ARPES reveals a strong in-plane polarisation, consistent with Rashba-like spin-orbit coupling. One state has a strong out-of-plane spin component, which matches with the miscut angle, suggesting its {possible} origin as an edge-state. The electronic structure of Bi(441) has significant similarities with topological insulator surface states and is expected to support one dimensional Quantum Spin Hall-like coupled spin-charge transport properties with inhibited backscattering, without requiring a topological insulator bulk.
We predict a mechanism to generate a pure spin current in a two-dimensional topological insulator. As the magnetic impurities exist on one of edges of the two-dimensional topological insulator, a gap is opened in the corresponding gapless edge states but another pair of gapless edge states with opposite spin are still protected by the time-reversal symmetry. So the conductance plateaus with the half-integer values $e^2/h$ can be obtained in the gap induced by magnetic impurities, which means that the pure spin current can be induced in the sample. We also find that the pure spin current is insensitive to weak disorder. The mechanism to generate pure spin currents is generalized for two-dimensional topological insulators.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا