ﻻ يوجد ملخص باللغة العربية
The high index (441) surface of bismuth has been studied using Scanning Tunnelling Microscopy (STM), Angle Resolved Photoemission Spectroscopy (APRES) and spin-resolved ARPES. The surface is strongly corrugated, exposing a regular array of (110)-like terraces. Two surface localised states are observed, both of which are linearly dispersing in one in-plane direction ($k_x$), and dispersionless in the orthogonal in-plane direction ($k_y$), and both of which have a Dirac-like crossing at $k_x$=0. Spin ARPES reveals a strong in-plane polarisation, consistent with Rashba-like spin-orbit coupling. One state has a strong out-of-plane spin component, which matches with the miscut angle, suggesting its {possible} origin as an edge-state. The electronic structure of Bi(441) has significant similarities with topological insulator surface states and is expected to support one dimensional Quantum Spin Hall-like coupled spin-charge transport properties with inhibited backscattering, without requiring a topological insulator bulk.
We predict from first-principles calculations a novel structure of stanene with dumbbell units (DB), and show that it is a two-dimensional topological insulator with inverted band gap which can be tuned by compressive strain. Furthermore, we propose
We report an unconventional quantum spin Hall phase in the monolayer T$_text{d}$-WTe$_2$, which exhibits hitherto unknown features in other topological materials. The low-symmetry of the structure induces a canted spin texture in the $yz$ plane, whic
Understanding the spin-texture behavior of boundary modes in ultrathin topological insulator films is critically essential for the design and fabrication of functional nano-devices. Here by using spin-resolved photoemission spectroscopy with p-polari
Topological insulators represent a new quantum state of matter that are insulating in the bulk but metallic on the edge or surface. In the Dirac surface state, it is well-established that the electron spin is locked with the crystal momentum. Here we
We observe an unusual behavior of the spin Hall magnetoresistance (SMR) measured in a Pt ultra-thin film deposited on a ferromagnetic insulator, which is a tensile-strained LaCoO3 (LCO) thin film with the Curie temperature Tc=85K. The SMR displays a