ترغب بنشر مسار تعليمي؟ اضغط هنا

Emergent quantum Hall effects below $50$ mT in a two-dimensional topological insulator

75   0   0.0 ( 0 )
 نشر من قبل Saquib Shamim
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The realization of the quantum spin Hall effect in HgTe quantum wells has led to the development of topological materials which, in combination with magnetism and superconductivity, are predicted to host chiral Majorana fermions. However, the large magnetization ($sim$ a few tesla) in conventional quantum anomalous Hall system, makes it challenging to induce superconductivity. Here, we report two different emergent quantum Hall effects in HgTe quantum wells dilutely alloyed with Mn. Firstly, a novel quantum Hall state emerges from the quantum spin Hall state at an exceptionally low magnetic field of $sim 50$ mT. Secondly, tuning towards the bulk $p$-regime, we resolve multiple quantum Hall plateaus at fields as low as $20 - 30$ mT, where transport is dominated by a van Hove singularity in the valence band. These emergent quantum Hall phenomena rely critically on the topological band structure of HgTe and their occurrence at very low fields make them an ideal candidate for interfacing with superconductors to realize chiral Majorana fermions.



قيم البحث

اقرأ أيضاً

208 - M. N. Chen , W. C. Chen , 2021
In this work, we propose a ferromagnetic Bi$_2$Se$_3$ as a candidate to hold the coexistence of Weyl- and nodal-line semimetal phases, which breaks the time reversal symmetry. We demonstrate that the type-I Weyl semimetal phase, type-I-, type-II- a nd their hybrid nodal-line semimetal phases can arise by tuning the Zeeman exchange field strength and the Fermi velocity. Their topological responses under U(1) gauge field are also discussed. Our results raise a new way for realizing Weyl and nodal-line semimetals and will be helpful in understanding the topological transport phenomena in three-dimensional material systems.
127 - Jue Jiang , Di Xiao , Fei Wang 2019
The quantum anomalous Hall (QAH) effect is a quintessential consequence of non-zero Berry curvature in momentum-space. The QAH insulator harbors dissipation-free chiral edge states in the absence of an external magnetic field. On the other hand, the topological Hall (TH) effect, a transport hallmark of the chiral spin textures, is a consequence of real-space Berry curvature. While both the QAH and TH effects have been reported separately, their coexistence, a manifestation of entangled chiral edge states and chiral spin textures, has not been reported. Here, by inserting a TI layer between two magnetic TI layers to form a sandwich heterostructure, we realized a concurrence of the TH effect and the QAH effect through electric field gating. The TH effect is probed by bulk carriers, while the QAH effect is characterized by chiral edge states. The appearance of TH effect in the QAH insulating regime is the consequence of chiral magnetic domain walls that result from the gate-induced Dzyaloshinskii-Moriya interaction and occur during the magnetization reversal process in the magnetic TI sandwich samples. The coexistence of chiral edge states and chiral spin textures potentially provides a unique platform for proof-of-concept dissipationless spin-textured spintronic applications.
We predict from first-principles calculations a novel structure of stanene with dumbbell units (DB), and show that it is a two-dimensional topological insulator with inverted band gap which can be tuned by compressive strain. Furthermore, we propose that the boron nitride sheet and reconstructed ($2times2$) InSb(111) surfaces are ideal substrates for the experimental realization of DB stanene, maintaining its non-trivial topology. Combined with standard semiconductor technologies, such as magnetic doping and electrical gating, the quantum anomalous Hall effect, Chern half metallicity and topological superconductivity can be realized in DB stanene on those substrates. These properties make the two-dimensional supported stanene a good platform for the study of new quantum spin Hall insulator as well as other exotic quantum states of matter.
Josephson weak links made of two-dimensional topological insulators (TIs) exhibit magnetic oscillations of the supercurrent that are reminiscent of those in superconducting quantum interference devices (SQUIDs). We propose a microscopic theory of thi s effect that goes beyond the approaches based on the standard SQUID theory. For long junctions we find a temperature-driven crossover from Phi_0-periodic SQUID-like oscillations to a 2 Phi_0-quasiperiodic interference pattern with different peaks at even and odd values of the magnetic flux quantum Phi_0=ch/2e. This behavior is absent in short junctions where the main interference signal occurs at zero magnetic field. Both types of interference patterns reveal gapless (protected) Andreev bound states. We show, however, that the usual sawtooth current-flux relationship is profoundly modified by a Doppler-like effect of the shielding current which has been overlooked previously. Our findings may explain recently observed even-odd interference patterns in InAs/GaSb-based TI Josephson junctions and uncover unexplored operation regimes of nano-SQUIDs.
We study the crossed Andreev effects in two-dimensional conductor/superconductor hybrid systems under a perpendicular magnetic field. Both a graphene/superconductor hybrid system and an electron gas/superconductor one are considered. It is shown that an exclusive crossed Andreev reflection, with other Andreev reflections being completely suppressed, is obtained in a high magnetic field because of the chiral edge states in the quantum Hall regime. Importantly, the exclusive crossed Andreev reflection not only holds for a wide range of system parameters, e.g., the size of system, the width of central superconductor, and the quality of coupling between the graphene and the superconductor, but also is very robust against disorder. When the applied bias is within the superconductor gap, a robust Cooper-pair splitting process with high-efficiency can be realized in this system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا