ترغب بنشر مسار تعليمي؟ اضغط هنا

On-demand maximally entangled states with a parity meter and continuous feedback

123   0   0.0 ( 0 )
 نشر من قبل G\\'eraldine Haack
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Generating on-demand maximally entangled states is one of the corner stones for quantum information processing. Parity measurements can serve to create Bell states and have been implemented via an electronic Mach-Zehnder interferometer among others. However, the entanglement generation is necessarily harmed by measurement induced dephasing processes in one of the two parity subspace. In this work, we propose two different schemes of continuous feedback for a parity measurement. They enable us to avoid both the measurement-induced dephasing process and the experimentally unavoidable dephasing, e.g. due to fluctuations of the gate voltages controlling the initialization of the qubits. We show that we can generate maximally entangled steady states in both parity subspaces. Importantly, the measurement scheme we propose is valid for implementation of parity measurements with feedback loops in various solid-state environments.



قيم البحث

اقرأ أيضاً

We present a 1 GHz-clocked, maximally entangled and on-demand photon pair source based on droplet etched GaAs quantum dots using two-photon excitation. By employing these GaP microlensenhanced devices in conjunction with their substantial brightness, raw entanglement fidelities of up to $0.95 pm 0.01$ and post-selected photon indistinguishabilities of up to $0.93 pm 0.01$, the suitability for quantum repeater based long range quantum entanglement distribution schemes is shown. Comprehensive investigations of a complete set of polarization selective two-photon correlations as well as time resolved Hong-Ou-Mandel interferences facilitate innovative methods that determine quantities such as photon extraction and excitation efficiencies as well as pure dephasing directly - opposed to commonly employed indirect techniques.
We demonstrate a total charge parity measurement by detecting the radio frequency signal that is reflected by a lumped element resonator coupled to a single InAs nanowire double quantum dot. The high frequency response of the circuit is used to probe the effects of the Pauli exclusion principle at interdot charge transitions. Even parity charge transitions show a striking magnetic field dependence that is due to a singlet-triplet transition, while odd parity transitions are relatively insensitive to magnetic field. The measured response agrees well with cavity input-output theory, allowing accurate measurements of the interdot tunnel coupling and the resonator-charge coupling rate g_c/2pi ~ 17 MHz.
The prospect of using the quantum nature of light for secure communication keeps spurring the search and investigation of suitable sources of entangled-photons. Semiconductor quantum dots are arguably the most attractive. They can generate indistingu ishable entangled-photons deterministically, and are compatible with current photonic-integration technologies, a set of properties not shared by any other entanglement resource. However, as no two quantum dots are identical, they emit entangled-photons with random energies. This hinders their exploitation in communication protocols requiring entangled-states with well-defined energies. Here, we introduce scalable quantum-dot-based sources of polarization-entangled-photons whose energy can be controlled via dynamic strain-engineering without degrading the degree of entanglement of the source. As a test-bench, we interface quantum dots with clouds of atomic vapours, and we demonstrate slow-entangled-photons from a single quantum emitter. These results pave the way towards the implementation of hybrid quantum networks where entanglement is distributed among distant parties using scalable optoelectronic devices.
The integration of entangled photon emitters in nanophotonic structures designed for the broadband enhancement of photon extraction is a major challenge for quantum information technologies. We study the potential of quantum dot (QD) microlenses to a ct as efficient emitters of maximally entangled photons. For this purpose, we perform quantum tomography measurements on InGaAs QDs integrated deterministically into microlenses. Even though the studied QDs show non-zero excitonic fine-structure splitting (FSS), polarization entanglement can be prepared with a fidelity close to unity. The quality of the measured entanglement is only dependent on the temporal resolution of the used single-photon detectors compared to the period of the excitonic phase precession imposed by the FSS. Interestingly, entanglement is kept along the full excitonic wave-packet and is not affected by decoherence. Furthermore, coherent control of the upper biexcitonic state is demonstrated.
We show experimentally that a dc-biased Josephson junction in series with two microwave resonators emits entangled beams of microwaves leaking out of the resonators. In the absence of a stationary phase reference for characterizing the entanglement o f the outgoing beams, we measure second-order coherence functions for proving entanglement up to an emission rate of 2.5 billion photon pairs per second. The experimental results are found in quantitative agreement with theory, proving that the low frequency noise of the dc bias is the main limitation for the coherence time of the entangled beams. This agreement allows us to evaluate the entropy of entanglement of the resonators, and to identify the improvements that could bring this device closer to a useful bright source of entangled microwaves for quantum-technological applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا