ﻻ يوجد ملخص باللغة العربية
The prospect of using the quantum nature of light for secure communication keeps spurring the search and investigation of suitable sources of entangled-photons. Semiconductor quantum dots are arguably the most attractive. They can generate indistinguishable entangled-photons deterministically, and are compatible with current photonic-integration technologies, a set of properties not shared by any other entanglement resource. However, as no two quantum dots are identical, they emit entangled-photons with random energies. This hinders their exploitation in communication protocols requiring entangled-states with well-defined energies. Here, we introduce scalable quantum-dot-based sources of polarization-entangled-photons whose energy can be controlled via dynamic strain-engineering without degrading the degree of entanglement of the source. As a test-bench, we interface quantum dots with clouds of atomic vapours, and we demonstrate slow-entangled-photons from a single quantum emitter. These results pave the way towards the implementation of hybrid quantum networks where entanglement is distributed among distant parties using scalable optoelectronic devices.
Generating on-demand maximally entangled states is one of the corner stones for quantum information processing. Parity measurements can serve to create Bell states and have been implemented via an electronic Mach-Zehnder interferometer among others.
Quantum key distribution---exchanging a random secret key relying on a quantum mechanical resource---is the core feature of secure quantum networks. Entanglement-based protocols offer additional layers of security and scale favorably with quantum rep
Photonic integrated circuits (PICs) have emerged as a scalable platform for complex quantum technologies using photonic and atomic systems. A central goal has been to integrate photon-resolving detectors to reduce optical losses, latency, and wiring
We theoretically investigate the efficiency of an entanglement swapping procedure based on the use of quantum dots as sources of entangled photon pairs. The four-photon interference that affects such efficiency is potentially limited by the fine-stru
Many of the envisioned quantum photonic technologies, e.g. a quantum repeater, rely on an energy- (wavelength-) tunable source of polarization entangled photon pairs. The energy tunability is a fundamental requirement to perform two-photon-interferen