ﻻ يوجد ملخص باللغة العربية
We demonstrate a total charge parity measurement by detecting the radio frequency signal that is reflected by a lumped element resonator coupled to a single InAs nanowire double quantum dot. The high frequency response of the circuit is used to probe the effects of the Pauli exclusion principle at interdot charge transitions. Even parity charge transitions show a striking magnetic field dependence that is due to a singlet-triplet transition, while odd parity transitions are relatively insensitive to magnetic field. The measured response agrees well with cavity input-output theory, allowing accurate measurements of the interdot tunnel coupling and the resonator-charge coupling rate g_c/2pi ~ 17 MHz.
We study a Cooper-pair transistor realized by two Josephson weak links that enclose a superconducting island in an InSb-Al hybrid nanowire. When the nanowire is subject to a magnetic field, isolated subgap levels arise in the superconducting island a
We report on charge sensing measurements of a GaAs semiconductor quantum dot device using a radio frequency quantum point contact (rf-QPC). The rf-QPC is fully characterized at 4 K and milli-Kelvin temperatures and found to have a bandwidth exceeding
Generating on-demand maximally entangled states is one of the corner stones for quantum information processing. Parity measurements can serve to create Bell states and have been implemented via an electronic Mach-Zehnder interferometer among others.
Spin qubits in silicon quantum dots offer a promising platform for a quantum computer as they have a long coherence time and scalability. The charge sensing technique plays an essential role in reading out the spin qubit as well as tuning the device
We evaluate the rates of energy and phase relaxation of a superconducting qubit caused by stray photons with energy exceeding the threshold for breaking a Cooper pair. All channels of relaxation within this mechanism are associated with the change in