ترغب بنشر مسار تعليمي؟ اضغط هنا

Inferring Social Structure and Dominance Relationships Between Rhesus macaques using RFID Tracking Data

80   0   0.0 ( 0 )
 نشر من قبل Walter Lasecki
 تاريخ النشر 2014
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we address the problem of inferring social structure and dominance relationships in a group of rhesus macaques (a species of monkey) using only position data captured using RFID tags. Automatic inference of the social structure in an animal group enables a number of important capabilities, including: 1) A verifiable measure of how the social structure is affected by an intervention such as a change in the environment, or the introduction of another animal, and 2) A potentially significant reduction in person hours normally used for assessing these changes. Social structure in a group is an important indicator of its members relative level of access to resources and has interesting implications for an individuals health and learning in groups. There are two main quantitative criteria assessed in order to infer the social structure; Time spent close to conspecifics, and displacements. An interaction matrix is used to represent the total duration of events detected as grooming behavior between any two monkeys. This forms an undirected tie-strength (closeness of relationships) graph. A directed graph of hierarchy is constructed by using the well cited assumption of a linear hierarchy for rhesus macaques. Events that contribute to the adjacency matrix for this graph are withdrawals or displacements where a lower ranked monkey moves away from a higher ranked monkey. Displacements are one of the observable behaviors that can act as a strong indication of tie-strength and dominance. To quantify the directedness of interaction during these events we construct histograms of the dot products of motion orientation and relative position. This gives us a measure of how much time a monkey spends in moving towards or away from other group members.



قيم البحث

اقرأ أيضاً

Consider a population of individuals that observe an underlying state of nature that evolves over time. The population is classified into different levels depending on the hierarchical influence that dictates how the individuals at each level form an opinion on the state. The population is sampled sequentially by a pollster and the nodes (or individuals) respond to the questions asked by the pollster. This paper considers the following problem: How should the pollster poll the hierarchical social network to estimate the state while minimizing the polling cost (measurement cost and uncertainty in the Bayesian state estimate)? This paper proposes adaptiv
Precisely understanding the business relationships between Autonomous Systems (ASes) is essential for studying the Internet structure. So far, many inference algorithms have been proposed to classify the AS relationships, which mainly focus on Peer-P eer (P2P) and Provider-Customer (P2C) binary classification and achieved excellent results. However, there are other types of AS relationships in actual scenarios, i.e., the businessbased sibling and structure-based exchange relationships, that were neglected in the previous research. These relationships are usually difficult to be inferred by existing algorithms because there is no discrimination on the designed features compared to the P2P or P2C relationships. In this paper, we focus on the multi-classification of AS relationships for the first time. We first summarize the differences between AS relationships under the structural and attribute features, and the reasons why multiple relationships are difficult to be inferred. We then introduce new features and propose a Graph Convolutional Network (GCN) framework, AS-GCN, to solve this multi-classification problem under complex scene. The framework takes into account the global network structure and local link features concurrently. The experiments on real Internet topological data validate the effectiveness of our method, i.e., AS-GCN achieves comparable results on the easy binary classification task, and outperforms a series of baselines on the more difficult multi-classification task, with the overall accuracy above 95%.
Peoples interests and peoples social relationships are intuitively connected, but understanding their interplay and whether they can help predict each other has remained an open question. We examine the interface of two decisive structures forming th e backbone of online social media: the graph structure of social networks - who connects with whom - and the set structure of topical affiliations - who is interested in what. In studying this interface, we identify key relationships whereby each of these structures can be understood in terms of the other. The context for our analysis is Twitter, a complex social network of both follower relationships and communication relationships. On Twitter, hashtags are used to label conversation topics, and we examine hashtag usage alongside these social structures. We find that the hashtags that users adopt can predict their social relationships, and also that the social relationships between the initial adopters of a hashtag can predict the future popularity of that hashtag. By studying weighted social relationships, we observe that while strong reciprocated ties are the easiest to predict from hashtag structure, they are also much less useful than weak directed ties for predicting hashtag popularity. Importantly, we show that computationally simple structural determinants can provide remarkable performance in both tasks. While our analyses focus on Twitter, we view our findings as broadly applicable to topical affiliations and social relationships in a host of diverse contexts, including the movies people watch, the brands people like, or the locations people frequent.
Information diffusion is a fundamental process that takes place over networks. While it is rarely realistic to observe the individual transmissions of the information diffusion process, it is typically possible to observe when individuals first publi sh the information. We look specifically at previously published algorithm NETINF that probabilistically identifies the optimal network that best explains the observed infection times. We explore how the algorithm could perform on a range of intrinsically different social and information network topologies, from news blogs and websites to Twitter to Reddit.
Stance detection, which aims to determine whether an individual is for or against a target concept, promises to uncover public opinion from large streams of social media data. Yet even human annotation of social media content does not always capture stance as measured by public opinion polls. We demonstrate this by directly comparing an individuals self-reported stance to the stance inferred from their social media data. Leveraging a longitudinal public opinion survey with respondent Twitter handles, we conducted this comparison for 1,129 individuals across four salient targets. We find that recall is high for both Pro and Anti stance classifications but precision is variable in a number of cases. We identify three factors leading to the disconnect between text and author stance: temporal inconsistencies, differences in constructs, and measurement errors from both survey respondents and annotators. By presenting a framework for assessing the limitations of stance detection models, this work provides important insight into what stance detection truly measures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا