ﻻ يوجد ملخص باللغة العربية
Peoples interests and peoples social relationships are intuitively connected, but understanding their interplay and whether they can help predict each other has remained an open question. We examine the interface of two decisive structures forming the backbone of online social media: the graph structure of social networks - who connects with whom - and the set structure of topical affiliations - who is interested in what. In studying this interface, we identify key relationships whereby each of these structures can be understood in terms of the other. The context for our analysis is Twitter, a complex social network of both follower relationships and communication relationships. On Twitter, hashtags are used to label conversation topics, and we examine hashtag usage alongside these social structures. We find that the hashtags that users adopt can predict their social relationships, and also that the social relationships between the initial adopters of a hashtag can predict the future popularity of that hashtag. By studying weighted social relationships, we observe that while strong reciprocated ties are the easiest to predict from hashtag structure, they are also much less useful than weak directed ties for predicting hashtag popularity. Importantly, we show that computationally simple structural determinants can provide remarkable performance in both tasks. While our analyses focus on Twitter, we view our findings as broadly applicable to topical affiliations and social relationships in a host of diverse contexts, including the movies people watch, the brands people like, or the locations people frequent.
A number of recent studies of information diffusion in social media, both empirical and theoretical, have been inspired by viral propagation models derived from epidemiology. These studies model the propagation of memes, i.e., pieces of information,
We study network centrality based on dynamic influence propagation models in social networks. To illustrate our integrated mathematical-algorithmic approach for understanding the fundamental interplay between dynamic influence processes and static ne
Social groups play a crucial role in social media platforms because they form the basis for user participation and engagement. Groups are created explicitly by members of the community, but also form organically as members interact. Due to their impo
We study a model of information aggregation and social learning recently proposed by Jadbabaie, Sandroni, and Tahbaz-Salehi, in which individual agents try to learn a correct state of the world by iteratively updating their beliefs using private obse
Finding influential users in online social networks is an important problem with many possible useful applications. HITS and other link analysis methods, in particular, have been often used to identify hub and authority users in web graphs and online