ترغب بنشر مسار تعليمي؟ اضغط هنا

Experiments in Inferring Social Networks of Diffusion

80   0   0.0 ( 0 )
 نشر من قبل Daniel Campos
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Information diffusion is a fundamental process that takes place over networks. While it is rarely realistic to observe the individual transmissions of the information diffusion process, it is typically possible to observe when individuals first publish the information. We look specifically at previously published algorithm NETINF that probabilistically identifies the optimal network that best explains the observed infection times. We explore how the algorithm could perform on a range of intrinsically different social and information network topologies, from news blogs and websites to Twitter to Reddit.



قيم البحث

اقرأ أيضاً

The problem of maximizing information diffusion, given a certain budget expressed in terms of the number of seed nodes, is an important topic in social networks research. Existing literature focuses on single phase diffusion where all seed nodes are selected at the beginning of diffusion and all the selected nodes are activated simultaneously. This paper undertakes a detailed investigation of the effect of selecting and activating seed nodes in multiple phases. Specifically, we study diffusion in two phases assuming the well-studied independent cascade model. First, we formulate an objective function for two-phase diffusion, investigate its properties, and propose efficient algorithms for finding seed nodes in the two phases. Next, we study two associated problems: (1) budget splitting which seeks to optimally split the total budget between the two phases and (2) scheduling which seeks to determine an optimal delay after which to commence the second phase. Our main conclusions include: (a) under strict temporal constraints, use single phase diffusion, (b) under moderate temporal constraints, use two-phase diffusion with a short delay while allocating most of the budget to the first phase, and (c) when there are no temporal constraints, use two-phase diffusion with a long delay while allocating roughly one-third of the budget to the first phase.
We propose a stochastic model for the diffusion of topics entering a social network modeled by a Watts-Strogatz graph. Our model sets into play an implicit competition between these topics as they vie for the attention of users in the network. The dy namics of our model are based on notions taken from real-world OSNs like Twitter where users either adopt an exogenous topic or copy topics from their neighbors leading to endogenous propagation. When instantiated correctly, the model achieves a viral regime where a few topics garner unusually good response from the network, closely mimicking the behavior of real-world OSNs. Our main contribution is our description of how clusters of proximate users that have spoken on the topic merge to form a large giant component making a topic go viral. This demonstrates that it is not weak ties but actually strong ties that play a major part in virality. We further validate our model and our hypotheses about its behavior by comparing our simulation results with the results of a measurement study conducted on real data taken from Twitter.
Current social networks are of extremely large-scale generating tremendous information flows at every moment. How information diffuse over social networks has attracted much attention from both industry and academics. Most of the existing works on in formation diffusion analysis are based on machine learning methods focusing on social network structure analysis and empirical data mining. However, the dynamics of information diffusion, which are heavily influenced by network users decisions, actions and their socio-economic interactions, is generally ignored by most of existing works. In this paper, we propose an evolutionary game theoretic framework to model the dynamic information diffusion process in social networks. Specifically, we derive the information diffusion dynamics in complete networks, uniform degree and non-uniform degree networks, with the highlight of two special networks, ErdH{o}s-Renyi random network and the Barabasi-Albert scale-free network. We find that the dynamics of information diffusion over these three kinds of networks are scale-free and the same with each other when the network scale is sufficiently large. To verify our theoretical analysis, we perform simulations for the information diffusion over synthetic networks and real-world Facebook networks. Moreover, we also conduct experiment on Twitter hashtags dataset, which shows that the proposed game theoretic model can well fit and predict the information diffusion over real social networks.
This paper deals with the statistical signal pro- cessing over graphs for tracking infection diffusion in social networks. Infection (or Information) diffusion is modeled using the Susceptible-Infected-Susceptible (SIS) model. Mean field approximatio n is employed to approximate the discrete valued infected degree distribution evolution by a deterministic ordinary differential equation for obtaining a generative model for the infection diffusion. The infected degree distribution is shown to follow polynomial dynamics and is estimated using an exact non- linear Bayesian filter. We compute posterior Cramer-Rao bounds to obtain the fundamental limits of the filter which depend on the structure of the network. Considering the time-varying nature of the real world networks, the relationship between the diffusion thresholds and the degree distribution is investigated using generative models for real world networks. In addition, we validate the efficacy of our method with the diffusion data from a real-world online social system, Twitter. We find that SIS model is a good fit for the information diffusion and the non-linear filter effectively tracks the information diffusion.
This article presents a novel approach for learning low-dimensional distributed representations of users in online social networks. Existing methods rely on the network structure formed by the social relationships among users to extract these represe ntations. However, the network information can be obsolete, incomplete or dynamically changing. In addition, in some cases, it can be prohibitively expensive to get the network information. Therefore, we propose an alternative approach based on observations from topics being talked on in social networks. We utilise the time information of users adopting topics in order to embed them in a real-valued vector space. Through extensive experiments, we investigate the properties of the representations learned and their efficacy in preserving information about link structure among users. We also evaluate the representations in two different prediction tasks, namely, predicting most likely future adopters of a topic and predicting the geo-location of users. Experiments to validate the proposed methods are performed on a large-scale social network extracted from Twitter, consisting of about 7.7 million users and their activity on around 3.6 million topics over a month-long period.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا