ﻻ يوجد ملخص باللغة العربية
We generalize the notion of planar bicycle tracks -- a.k.a. one-trailer systems -- to so-called tractor/tractrix systems in general Riemannian manifolds and prove explicit expressions for the length of the ensuing tractrices and for the area of the domains that are swept out by any given tractor/tractrix system. These expressions are sensitive to the curvatures of the ambient Riemannian manifold, and we prove explicit estimates for them based on Rauchs and Toponogovs comparison theorems. Moreover, the general length shortening property of tractor/tractrix systems is used to generate geodesics in homotopy classes of curves in the ambient manifold.
A {em 2-Riemannian manifold} is a differentiable manifold exhibiting a 2-inner product on each tangent space. We first study lower dimensional 2-Riemannian manifolds by giving necessary and sufficient conditions for flatness. Afterward we associate t
Flag manifolds are in general not symmetric spaces. But they are provided with a structure of $mathbb{Z}_2^k$-symmetric space. We describe the Riemannian metrics adapted to this structure and some properties of reducibility. We detail for the flag ma
We quantify conditions that ensure that a signed measure on a Riemannian manifold has a well defined centre of mass. We then use this result to quantify the extent of a neighbourhood on which the Riemannian barycentric coordinates of a set of $n+1$ p
We study compact Riemannian manifolds for which the light between any pair of points is blocked by finitely many point shades. Compact flat Riemannian manifolds are known to have this finite blocking property. We conjecture that amongst compact Riema
We describe all affine maps from a Riemannian manifold to a metric space and all possible image spaces.