ﻻ يوجد ملخص باللغة العربية
Utilizing the strengths of nitrogen doped graphene quantum dot (N-GQD) as a substrate, here in, we have shown that one can stabilize the catalytically more active planar Au 20 (P-Au 20 ) compared to the thermodynamically more stable tetrahedral structure (T-Au 20 ) on an N-GQD. Clearly, this simple route avoids the usage of traditional transition metal oxide substrates which have been suggested and used for stabilizing the planar structure for a long time. Considering the experimental success in the synthesis of N-GQDs and in the stabilization of Au nanoparticles on N-doped graphene, we expect our proposed method to stabilize planar structure will be realized experimentally and will be useful for industrial level applications.
We propose, on the basis of our first principles density functional based calculations, a new isomer of graphane, in which the C-H bonds of a hexagon alternate in 3-up, 3-down fashion on either side of the sheet. This 2D puckered structure called sti
The conversion of graphene into diamond is a new way for preparing ultrathin diamond film without pressure. Herein, we investigated the transformation mechanism of surface-hydrogenated bilayer graphene (SHBG) into surface-hydrogenated single-layer di
We report the synthesis of single and bi layer graphene films by low pressure chemical vapor deposition technique on Cu and Au substrates. The as grown films were characterized by transmission electron microscopy, scanning electron microscopy and Ram
Two-dimensional alloys of carbon and nitrogen represent an urgent interest due to prospective applications in nanomechanical and optoelectronic devices. Stability of these chemical structures must be understood as a function of their composition. The
The electronic properties of pure and As-doped Si nanowires with radii up to 9.53 nm are studied using large scale density functional theory (DFT) calculations. We show that, for the undoped nanowires, the DFT bandgap reduces with increasing diameter