ترغب بنشر مسار تعليمي؟ اضغط هنا

DFT study of undoped and As-doped Si nanowires approaching the bulk limit

90   0   0.0 ( 0 )
 نشر من قبل David Bowler
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The electronic properties of pure and As-doped Si nanowires with radii up to 9.53 nm are studied using large scale density functional theory (DFT) calculations. We show that, for the undoped nanowires, the DFT bandgap reduces with increasing diameter and converges to its bulk value, a trend in agreement with experimental data. Moreover, we show that the atoms closest to the surface of the nanowire contribute less to the states near the band edges, when compared with atoms close to the centre; this is shown to be due to differences in Si-Si atomic distances, as well as surface passivation effects. When considering As-doped Si nanowires we show that dopant placement within the nanowire plays an important role in deciding electronic properties. We show that a low velocity band is introduced by As doping, in the gap, but close to the conduction band edge. The dopant location affects the curvature of this band, with the curvature reducing when the dopant is placed closer to the center. We also show that asymmetry of dopant location with the nanowire leads to splitting of the valence band edge.

قيم البحث

اقرأ أيضاً

383 - K. R. Simov 2017
Mn doping of group-IV semiconductors (Si/Ge) is achieved by embedding a thin Mn-film as a {delta}-doped layer in group-IV matrix. The Mn-layer consists of a dense layer of monoatomic Mn-wires, which are oriented perpendicular to the Si(001)-(2x1) dim er rows, or Mn-clusters. The nanostructures are covered with an amorphous Si or Ge capping layer, which conserves the identity of the {delta}-doped layer. The analysis of the bonding environment with STM is combined with the element-specific detection of the magnetic signature with X-ray magnetic circular dichroism. The largest moment (2.5 {mu}B/Mn) is measured for Mn-wires, which have ionic bonding character, with an a-Ge overlayer cap, a-Si capping leads to a slightly reduced moment which has its origin in subtle variation of bonding geometry. Our results directly confirm theoretical predictions on magnetism for Mn-adatoms on Si(001). The moment is quenched to 0.5{mu}B/Mn for {delta}-doped layers, which are dominated by clusters, and thus develop an antiferromagnetic component from Mn-Mn bonding.
We have studied the electronic structure and the magnetism of Cu-doped ZnO nanowires, which have been reported to show ferromagnetism at room temperature [G. Z. Xing ${et}$ ${al}$., Adv. Mater. {bf 20}, 3521 (2008).], by x-ray photoemission spectrosc opy (XPS), x-ray absorption spectroscopy (XAS) and x-ray magnetic circular dichroism (XMCD). From the XPS and XAS results, we find that the Cu atoms are in the Cu$^{3+}$ state with mixture of Cu$^{2+}$ in the bulk region ($sim$ 100 nm), and that Cu$^{3+}$ ions are dominant in the surface region ($sim$ 5 nm), i.e., the surface electronic structure of the surface region differs from the bulk one. From the magnetic field and temperature dependences of the XMCD intensity, we conclude that the ferromagnetic interaction in ZnO:Cu NWs comes from the Cu$^{2+}$ and Cu$^{3+}$ states in the bulk region, and that most of the doped Cu ions are magnetically inactive probably because they are antiferromagnetically coupled with each other.
The present work reports synthesis, as well as a detailed and careful characterization of structural, magnetic, and dielectric properties of differently tempered undoped and doped CaCu3Ti4O12 (CCTO) ceramics. For this purpose, neutron and x-ray powde r diffraction, SQUID measurements, and dielectric spectroscopy have been performed. Mn-, Fe-, and Ni-doped CCTO ceramics were investigated in great detail to document the influence of low-level doping with 3d metals on the antiferromagnetic structure and dielectric properties. In the light of possible magnetoelectric coupling in these doped ceramics, the dielectric measurements were also carried out in external magnetic fields up to 7 T, showing a minor but significant dependence of the dielectric constant on the applied magnetic field. Undoped CCTO is well-known for its colossal dielectric constant in a broad frequency and temperature range. With the present extended characterization of doped as well as undoped CCTO, we want to address the question why doping with only 1% Mn or 0.5% Fe decreases the room-temperature dielectric constant of CCTO by a factor of ~100 with a concomitant reduction of the conductivity, whereas 0.5% Ni doping changes the dielectric properties only slightly. In addition, diffraction experiments and magnetic investigations were undertaken to check for possible correlations of the magnitude of the colossal dielectric constants with structural details or with magnetic properties like the magnetic ordering, the Curie-Weiss temperatures, or the paramagnetic moment. It is revealed, that while the magnetic ordering temperature and the effective moment of all investigated CCTO ceramics are rather similar, there is a dramatic influence of doping and tempering time on the Curie-Weiss constant.
The influence of local oxidation in silicon nanowires on hole transport, and hence the effect of varying the oxidation state of silicon atoms at the wire surface, is studied using density functional theory in conjunction with a Greens function scatte ring method. For silicon nanowires with growth direction along [110] and diameters of a few nanometers, it is found that the introduction of oxygen bridging and back bonds does not significantly degrade hole transport for voltages up to several hundred millivolts relative to the valence band edge. As a result, the mean free paths are comparable to or longer than the wire lengths envisioned for transistor and other nanoelectronics applications. Transport along [100]-oriented nanowires is less favorable, thus providing an advantage in terms of hole mobilities for [110] nanowire orientations, as preferentially produced in some growth methods.
Utilizing the strengths of nitrogen doped graphene quantum dot (N-GQD) as a substrate, here in, we have shown that one can stabilize the catalytically more active planar Au 20 (P-Au 20 ) compared to the thermodynamically more stable tetrahedral struc ture (T-Au 20 ) on an N-GQD. Clearly, this simple route avoids the usage of traditional transition metal oxide substrates which have been suggested and used for stabilizing the planar structure for a long time. Considering the experimental success in the synthesis of N-GQDs and in the stabilization of Au nanoparticles on N-doped graphene, we expect our proposed method to stabilize planar structure will be realized experimentally and will be useful for industrial level applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا