ﻻ يوجد ملخص باللغة العربية
We propose, on the basis of our first principles density functional based calculations, a new isomer of graphane, in which the C-H bonds of a hexagon alternate in 3-up, 3-down fashion on either side of the sheet. This 2D puckered structure called stirrup has got a comparable stability with the previously discovered chair and boat conformers of graphane. The physico-chemical properties of this third conformer are found to be similar to the other two conformers of graphane with an insulating direct band gap of 3.1 eV at the {Gamma} point. Any other alternative hydrogenation of the graphene sheet disrupts its symmetric puckered geometry and turns out to be energetically less favorable.
Different stoichiometric configurations of graphane and graphene fluoride are investigated within density functional theory. Their structural and electronic properties are compared, and we indicate the similarities and differences among the various c
Antiferromagnetic spintronics is an on-going growing field of research. Employing both standard density functional theory and the $GW$ approximation within the framework of the FLAPW method, we study the electronic and magnetic properties of seven po
We present a first-principles investigation of the structural, electronic, and magnetic properties of pyrolusite ($beta$-MnO$_2$) using conventional and extended Hubbard-corrected density-functional theory (DFT+$U$ and DFT+$U$+$V$). The onsite $U$ an
Utilizing the strengths of nitrogen doped graphene quantum dot (N-GQD) as a substrate, here in, we have shown that one can stabilize the catalytically more active planar Au 20 (P-Au 20 ) compared to the thermodynamically more stable tetrahedral struc
Recent studies on excitons in two-dimensional materials have been widely conducted for their potential usages for novel electronic and optical devices. Especially, sophisticated manipulation techniques of quantum degrees of freedom of excitons are de