ﻻ يوجد ملخص باللغة العربية
Nuclear magnetic resonance (NMR) imaging with nanometer resolution requires new detection techniques with sensitivity well beyond the capability of conventional inductive detection. Here, we demonstrate two dimensional imaging of $^1$H NMR from an organic test sample using a single nitrogen-vacancy center in diamond as the sensor. The NV center detects the oscillating magnetic field from precessing protons in the sample as the sample is scanned past the NV center. A spatial resolution of 12 nm is shown, limited primarily by the scan accuracy. With further development, NV-detected magnetic resonance imaging could lead to a new tool for three-dimensional imaging of complex nanostructures, including biomolecules.
We present nanoscale NMR measurements performed with nitrogen-vacancy (NV) centers located down to about 2 nm from the diamond surface. NV centers were created by shallow ion implantation followed by a slow, nanometer-by-nanometer removal of diamond
Sensitive, real-time optical magnetometry with nitrogen-vacancy centers in diamond relies on accurate imaging of small ($ll 10^{-2}$) fractional fluorescence changes across the diamond sample. We discuss the limitations on magnetic-field sensitivity
The nitrogen-vacancy (NV) color center in diamond is an atom-like system in the solid-state which specific spin properties can be efficiently used as a sensitive magnetic sensor. An external magnetic field induces Zeeman shifts of the NV center level
We give instructions for the construction and operation of a simple apparatus for performing optically detected magnetic resonance measurements on diamond samples containing high concentrations of nitrogen-vacancy (NV) centers. Each NV center has a s
The protocols for the control and readout of Nitrogen Vacancy (NV) centres electron spins in diamond offer an advanced platform for quantum computation, metrology and sensing. These protocols are based on the optical readout of photons emitted from N