ﻻ يوجد ملخص باللغة العربية
We present nanoscale NMR measurements performed with nitrogen-vacancy (NV) centers located down to about 2 nm from the diamond surface. NV centers were created by shallow ion implantation followed by a slow, nanometer-by-nanometer removal of diamond material using oxidative etching in air. The close proximity of NV centers to the surface yielded large 1H NMR signals of up to 3.4 uT-rms, corresponding to ~330 statistically polarized or ~10 fully polarized proton spins in a ~(1.8 nm)^3 detection volume.
Nuclear magnetic resonance (NMR) imaging with nanometer resolution requires new detection techniques with sensitivity well beyond the capability of conventional inductive detection. Here, we demonstrate two dimensional imaging of $^1$H NMR from an or
Detection of AC magnetic fields at the nanoscale is critical in applications ranging from fundamental physics to materials science. Isolated quantum spin defects, such as the nitrogen-vacancy center in diamond, can achieve the desired spatial resolut
Scanning probe microscopy is one of the most versatile windows into the nanoworld, providing imaging access to a variety of sample properties, depending on the probe employed. Tunneling probes map electronic properties of samples, magnetic and photon
We present a new method for high-resolution nanoscale magnetic resonance imaging (nano-MRI) that combines the high spin sensitivity of nanowire-based magnetic resonance detection with high spectral resolution nuclear magnetic resonance (NMR) spectros
The electrical conductivity of a material can feature subtle, nontrivial, and spatially-varying signatures with critical insight into the materials underlying physics. Here we demonstrate a conductivity imaging technique based on the atom-sized nitro