ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic imaging with an ensemble of Nitrogen Vacancy centers in diamond

140   0   0.0 ( 0 )
 نشر من قبل Thierry Debuisschert
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The nitrogen-vacancy (NV) color center in diamond is an atom-like system in the solid-state which specific spin properties can be efficiently used as a sensitive magnetic sensor. An external magnetic field induces Zeeman shifts of the NV center levels which can be measured using Optically Detected Magnetic Resonance (ODMR). In this work, we exploit the ODMR signal of an ensemble of NV centers in order to quantitatively map the vectorial structure of a magnetic field produced by a sample close to the surface of a CVD diamond hosting a thin layer of NV centers. The reconstruction of the magnetic field is based on a maximum-likelihood technique which exploits the response of the four intrinsic orientations of the NV center inside the diamond lattice. The sensitivity associated to a 1 {mu}m^2 area of the doped layer, equivalent to a sensor consisting of approximately 10^4 NV centers, is of the order of 2 {mu}T/sqrt{Hz}. The spatial resolution of the imaging device is 400 nm, limited by the numerical aperture of the optical microscope which is used to collect the photoluminescence of the NV layer. The versatility of the sensor is illustrated by the accurate reconstruction of the magnetic field created by a DC current inside a copper wire deposited on the diamond sample.

قيم البحث

اقرأ أيضاً

We use magnetic-field-dependent features in the photoluminescence of negatively charged nitrogen-vacancy centers to measure magnetic fields without the use of microwaves. In particular, we present a magnetometer based on the level anti-crossing in th e triplet ground state at 102.4 mT with a demonstrated noise floor of 6 nT/$sqrt{text{Hz}}$, limited by the intensity noise of the laser and the performance of the background-field power supply. The technique presented here can be useful in applications where the sensor is placed closed to conductive materials, e.g. magnetic induction tomography or magnetic field mapping, and in remote-sensing applications since principally no electrical access is needed.
We investigate the strain-induced coupling between a nitrogen-vacancy impurity and a resonant vibrational mode of a diamond nanoresonator. We show that under near-resonant laser excitation of the electronic states of the impurity, this coupling can m odify the state of the resonator and either cool the resonator close to the vibrational ground state or drive it into a large amplitude coherent state. We derive a semi-classical model to describe both effects and evaluate the stationary state of the resonator mode under various driving conditions. In particular, we find that by exploiting resonant single and multi-phonon transitions between near-degenerate electronic states, the coupling to high-frequency vibrational modes can be significantly enhanced and dominate over the intrinsic mechanical dissipation. Our results show that a single nitrogen-vacancy impurity can provide a versatile tool to manipulate and probe individual phonon modes in nanoscale diamond structures.
We perform pulsed optically detected electron spin resonance to measure the DC magnetic field sensitivity and electronic spin coherence time T_2 of an ensemble of near-surface, high-density nitrogen-vacancy (NV) centers engineered to have a narrow ma gnetic resonance linewidth. Combining pulsed spectroscopy with dynamic nuclear polarization, we obtain the photon-shot-noise-limited DC magnetic sensitivity of 35 nT Hz^{-0.5}. We find that T_2 is controlled by instantaneous diffusion, enabling decoherence spectroscopy on residual nitrogen impurity spins in the diamond lattice and a quantitative determination of their density. The demonstrated high DC magnetic sensitivity and decoherence spectroscopy are expected to broaden the application range for two-dimensional magnetic imaging.
A study of the photophysical properties of nitrogen-vacancy (NV) color centers in diamond nanocrystals of size of 50~nm or below is carried out by means of second-order time-intensity photon correlation and cross-correlation measurements as a functio n of the excitation power for both pure charge states, neutral and negatively charged, as well as for the photochromic state, where the center switches between both states at any power. A dedicated three-level model implying a shelving level is developed to extract the relevant photophysical parameters coupling all three levels. Our analysis confirms the very existence of the shelving level for the neutral NV center. It is found that it plays a negligible role on the photophysics of this center, whereas it is responsible for an increasing photon bunching behavior of the negative NV center with increasing power. From the photophysical parameters, we infer a quantum efficiency for both centers, showing that it remains close to unity for the neutral center over the entire power range, whereas it drops with increasing power from near unity to approximately 0.5 for the negative center. The photophysics of the photochromic center reveals a rich phenomenology that is to a large extent dominated by that of the negative state, in agreement with the excess charge release of the negative center being much slower than the photon emission process.
We give instructions for the construction and operation of a simple apparatus for performing optically detected magnetic resonance measurements on diamond samples containing high concentrations of nitrogen-vacancy (NV) centers. Each NV center has a s pin degree of freedom that can be manipulated and monitored by a combination of visible and microwave radiation. We observe Zeeman shifts in the presence of small external magnetic fields and describe a simple method to optically measure magnetic field strengths with a spatial resolution of several microns. The activities described are suitable for use in an advanced undergraduate lab course, powerfully connecting core quantum concepts to cutting edge applications. An even simpler setup, appropriate for use in more introductory settings, is also presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا