ترغب بنشر مسار تعليمي؟ اضغط هنا

No X-rays from WASP-18. Implications for its age, activity, and the influence of its massive hot Jupiter

344   0   0.0 ( 0 )
 نشر من قبل Ignazio Pillitteri
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

About 20% out of the $>1000$ known exoplanets are Jupiter analogs orbiting very close to their parent stars. It is still under debate to what detectable level such hot Jupiters possibly affect the activity of the host stars through tidal or magnetic star-planet interaction. In this paper we report on an 87 ks Chandra observation of the hot Jupiter hosting star WASP-18. This system is composed of an F6 type star and a hot Jupiter of mass $10.4 M_{Jup}$ orbiting in less than 20 hr around the parent star. On the basis of an isochrone fitting, WASP-18 is thought to be 600 Myr old and within the range of uncertainty of 0.5-2 Gyr. The star is not detected in X-rays down to a luminosity limit of $4times10^{26}$ erg/s, more than two orders of magnitude lower than expected for a star of this age and mass. This value proves an unusual lack of activity for a star with estimated age around 600 Myr. We argue that the massive planet can play a crucial role in disrupting the stellar magnetic dynamo created within its thin convective layers. Another additional 212 X-ray sources are detected in the Chandra image. We list them and briefly discuss their nature.

قيم البحث

اقرأ أيضاً

Detailed characterization of exoplanets has begun to yield measurements of their atmospheric properties that constrain the planets origins and evolution. For example, past observations of the dayside emission spectrum of the hot Jupiter WASP-12b indi cated that its atmosphere has a high carbon-to-oxygen ratio (C/O $>$ 1), suggesting it had a different formation pathway than is commonly assumed for giant planets. Here we report a precise near-infrared transmission spectrum for WASP-12b based on six transit observations with the Hubble Space Telescope/Wide Field Camera 3. We bin the data in 13 spectrophotometric light curves from 0.84 - 1.67 $mu$m and measure the transit depths to a median precision of 51 ppm. We retrieve the atmospheric properties using the transmission spectrum and find strong evidence for water absorption (7$sigma$ confidence). This detection marks the first high-confidence, spectroscopic identification of a molecule in the atmosphere of WASP-12b. The retrieved 1$sigma$ water volume mixing ratio is between $10^{-5}-10^{-2}$, which is consistent with C/O $>$ 1 to within 2$sigma$. However, we also introduce a new retrieval parameterization that fits for C/O and metallicity under the assumption of chemical equilibrium. With this approach, we constrain C/O to $0.5^{+0.2}_{-0.3}$ at $1,sigma$ and rule out a carbon-rich atmosphere composition (C/O$>1$) at $>3sigma$ confidence. Further observations and modeling of the planets global thermal structure and dynamics would aid in resolving the tension between our inferred C/O and previous constraints. Our findings highlight the importance of obtaining high-precision data with multiple observing techniques in order to obtain robust constraints on the chemistry and physics of exoplanet atmospheres.
115 - Paul Robertson 2015
We present an in-depth analysis of stellar activity and its effects on radial velocity (RV) for the M2 dwarf GJ 176 based on spectra taken over 10 years from the High Resolution Spectrograph on the Hobby-Eberly Telescope. These data are supplemented with spectra from previous observations with the HIRES and HARPS spectrographs, and V- and R-band photometry taken over 6 years at the Dyer and Fairborn observatories. Previous studies of GJ 176 revealed a super-Earth exoplanet in an 8.8-day orbit. However, the velocities of this star are also known to be contaminated by activity, particularly at the 39-day stellar rotation period. We have examined the magnetic activity of GJ 176 using the sodium I D lines, which have been shown to be a sensitive activity tracer in cool stars. In addition to rotational modulation, we see evidence of a long-term trend in our Na I D index, which may be part of a long-period activity cycle. The sodium index is well correlated with our RVs, and we show that this activity trend drives a corresponding slope in RV. Interestingly, the rotation signal remains in phase in photometry, but not in the spectral activity indicators. We interpret this phenomenon as the result of one or more large spot complexes or active regions which dominate the photometric variability, while the spectral indices are driven by the overall magnetic activity across the stellar surface. In light of these results, we discuss the potential for correcting activity signals in the RVs of M dwarfs.
158 - I. Pillitteri 2015
Hot Jupiters are subject to strong irradiation from the host stars and, as a consequence, they do evaporate. They can also interact with the parent stars by means of tides and magnetic fields. Both phenomena have strong implications for the evolution of these systems. Here we present time resolved spectroscopy of HD~189733 observed with the Cosmic Origin Spectrograph (COS) on board to HST. The star has been observed during five consecutive HST orbits, starting at a secondary transit of the planet ($phi$ ~0.50-0.63). Two main episodes of variability of ion lines of Si, C, N and O are detected, with an increase of line fluxes. Si IV lines show the highest degree of variability. The FUV variability is a signature of enhanced activity in phase with the planet motion, occurring after the planet egress, as already observed three times in X-rays. With the support of MHD simulations, we propose the following interpretation: a stream of gas evaporating from the planet is actively and almost steadily accreting onto the stellar surface, impacting at $70-90deg$ ahead of the sub-planetary point.
Abridged. Here we report on the X-ray activity of the primary star, HD189733 A, using a new XMM-Newton observation and a comparison with the previous X-ray observations. The spectrum in the quiescent intervals is described by two temperatures at 0.2 keV and 0.7 keV, while during the flares a third component at 0.9 keV is detected. We obtain estimates of the electron density in the range $n_e = 1.6 - 13 times 10^{10}$ cm$^{-3}$ and thus the corona of HD189733 A appears denser than the solar one. {For the third time, we observe a large flare that occurred just after the eclipse of the planet. Together with the flares observed in 2009 and 2011, the events are restricted to a small planetary phase range of $phi = 0.55-0.65$. Although we do not find conclusive evidence of a significant excess of flares after the secondary transits, we suggest that the planet might trigger such flares when it passes close to locally high magnetic field of the underlying star at particular combinations of stellar rotational phases and orbital planetary phases. For the most recent flares, a wavelet analysis of the light curve suggests a loop of length of four stellar radii at the location of the bright flare, and a local magnetic field of order of 40-100 G, in agreement with the global field measured in other studies. The loop size suggests an interaction of magnetic nature between planet and star, separated by only $sim8 R_*$. We also detect the stellar companion (HD 189733 B, $sim12$ from the primary star) in this XMM observation. Its very low X-ray luminosity ($L_X = 3.4times 10^{26}$ erg s$^{-1}$) confirms the old age of this star and of the binary system. The high activity of the primary star is best explained by a transfer of angular momentum from the planet to the star.
We report here X-ray imaging spectroscopy observations of the northeastern shell of the supernova remnant RCW 86 with Chandra and XMM-Newton. Along this part of the shell the dominant X-ray radiation mechanism changes from thermal to synchrotron emis sion. We argue that both the presence of X-ray synchrotron radiation and the width of the synchrotron emitting region suggest a locally higher shock velocity of V_s = 2700 km/s and a magnetic field of B = 24+/-5 microGauss. Moreover, we also show that a simple power law cosmic ray electron spectrum with an exponential cut-off cannot explain the broad band synchrotron emission. Instead a concave electron spectrum is needed, as predicted by non-linear shock acceleration models. Finally, we show that the derived shock velocity strengthens the case that RCW 86 is the remnant of SN 185.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا