ترغب بنشر مسار تعليمي؟ اضغط هنا

FUV variability of HD 189733. Is the star accreting material from its hot Jupiter?

203   0   0.0 ( 0 )
 نشر من قبل Ignazio Pillitteri
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف I. Pillitteri




اسأل ChatGPT حول البحث

Hot Jupiters are subject to strong irradiation from the host stars and, as a consequence, they do evaporate. They can also interact with the parent stars by means of tides and magnetic fields. Both phenomena have strong implications for the evolution of these systems. Here we present time resolved spectroscopy of HD~189733 observed with the Cosmic Origin Spectrograph (COS) on board to HST. The star has been observed during five consecutive HST orbits, starting at a secondary transit of the planet ($phi$ ~0.50-0.63). Two main episodes of variability of ion lines of Si, C, N and O are detected, with an increase of line fluxes. Si IV lines show the highest degree of variability. The FUV variability is a signature of enhanced activity in phase with the planet motion, occurring after the planet egress, as already observed three times in X-rays. With the support of MHD simulations, we propose the following interpretation: a stream of gas evaporating from the planet is actively and almost steadily accreting onto the stellar surface, impacting at $70-90deg$ ahead of the sub-planetary point.



قيم البحث

اقرأ أيضاً

Abridged. Here we report on the X-ray activity of the primary star, HD189733 A, using a new XMM-Newton observation and a comparison with the previous X-ray observations. The spectrum in the quiescent intervals is described by two temperatures at 0.2 keV and 0.7 keV, while during the flares a third component at 0.9 keV is detected. We obtain estimates of the electron density in the range $n_e = 1.6 - 13 times 10^{10}$ cm$^{-3}$ and thus the corona of HD189733 A appears denser than the solar one. {For the third time, we observe a large flare that occurred just after the eclipse of the planet. Together with the flares observed in 2009 and 2011, the events are restricted to a small planetary phase range of $phi = 0.55-0.65$. Although we do not find conclusive evidence of a significant excess of flares after the secondary transits, we suggest that the planet might trigger such flares when it passes close to locally high magnetic field of the underlying star at particular combinations of stellar rotational phases and orbital planetary phases. For the most recent flares, a wavelet analysis of the light curve suggests a loop of length of four stellar radii at the location of the bright flare, and a local magnetic field of order of 40-100 G, in agreement with the global field measured in other studies. The loop size suggests an interaction of magnetic nature between planet and star, separated by only $sim8 R_*$. We also detect the stellar companion (HD 189733 B, $sim12$ from the primary star) in this XMM observation. Its very low X-ray luminosity ($L_X = 3.4times 10^{26}$ erg s$^{-1}$) confirms the old age of this star and of the binary system. The high activity of the primary star is best explained by a transfer of angular momentum from the planet to the star.
HD 179949 is an F8V star, orbited by a giant planet at ~8 R* every 3.092514 days. The system was reported to undergo episodes of stellar activity enhancement modulated by the orbital period, interpreted as caused by Star-Planet Interactions (SPIs). O ne possible cause of SPIs is the large-scale magnetic field of the host star in which the close-in giant planet orbits. In this paper we present spectropolarimetric observations of HD 179949 during two observing campaigns (2009 September and 2007 June). We detect a weak large-scale magnetic field of a few Gauss at the surface of the star. The field configuration is mainly poloidal at both observing epochs. The star is found to rotate differentially, with a surface rotation shear of dOmega=0.216pm0.061 rad/d, corresponding to equatorial and polar rotation periods of 7.62pm0.07 and 10.3pm0.8 d respectively. The coronal field estimated by extrapolating the surface maps resembles a dipole tilted at ~70 degrees. We also find that the chromospheric activity of HD 179949 is mainly modulated by the rotation of the star, with two clear maxima per rotation period as expected from a highly tilted magnetosphere. In September 2009, we find that the activity of HD 179949 shows hints of low amplitude fluctuations with a period close to the beat period of the system.
HD 189733 is a K2 dwarf, orbited by a giant planet at 8.8 stellar radii. In order to study magnetospheric interactions between the star and the planet, we explore the large-scale magnetic field and activity of the host star. We collected spectra us ing the ESPaDOnS and the NARVAL spectropolarimeters, installed at the 3.6-m Canada-France-Hawaii telescope and the 2-m Telescope Bernard Lyot at Pic du Midi, during two monitoring campaigns (June 2007 and July 2008). HD 189733 has a mainly toroidal surface magnetic field, having a strength that reaches up to 40 G. The star is differentially rotating, with latitudinal angular velocity shear of domega = 0.146 +- 0.049 rad/d, corresponding to equatorial and polar periods of 11.94 +- 0.16 d and 16.53 +- 2.43 d respectively. The study of the stellar activity shows that it is modulated mainly by the stellar rotation (rather than by the orbital period or the beat period between the stellar rotation and the orbital periods). We report no clear evidence of magnetospheric interactions between the star and the planet. We also extrapolated the field in the stellar corona and calculated the planetary radio emission expected for HD 189733b given the reconstructed field topology. The radio flux we predict in the framework of this model is time variable and potentially detectable with LOFAR.
Using the POLISH instrument, I am unable to reproduce the large-amplitude polarimetric observations of Berdyugina et al. (2008) to the >99.99% confidence level. I observe no significant polarimetric variability in the HD 189733 system, and the upper limit to variability from the exoplanet is Delta_P < 7.9 x 10^(-5) with 99% confidence in the 400 nm to 675 nm wavelength range. Berdyugina et al. (2008) report polarized, scattered light from the atmosphere of the HD 189733b hot Jupiter with an amplitude of two parts in 10^4. Such a large amplitude is over an order of magnitude larger than expected given a geometric albedo similar to other hot Jupiters. However, my non-detection of polarimetric variability phase-locked to the orbital period of the exoplanet, and the lack of any significant variability, shows that the polarimetric modulation reported by Berdyugina et al. (2008) cannot be due to the exoplanet.
The more massive counterparts of T Tauri stars, Herbig Ae/Be stars, are known to vary in a complex way with no variability mechanism clearly identified. We attempt to characterize the optical variability of HD~37806 (MWC 120) on time scales ranging b etween minutes and several years. A continuous, one-minute resolution, 21 day-long sequence of MOST (Microvariability & Oscillations of STars) satellite observations has been analyzed using wavelet, scalegram and dispersion analysis tools. The MOST data have been augmented by sparse observations over 9 seasons from ASAS (All Sky Automated Survey), by previously non-analyzed ESO (European Southern Observatory) data partly covering 3 seasons and by archival measurements dating back half a century ago. Mutually superimposed flares or accretion instabilities grow in size from about 0.0003 of the mean flux on a time scale of minutes to a peak-to-peak range of <~0.05 on a time scale of a few years. The resulting variability has properties of stochastic red noise, whose self-similar characteristics are very similar to those observed in cataclysmic binary stars, but with much longer characteristic time scales of hours to days (rather than minutes) and with amplitudes which appear to cease growing in size on time scales of tens of years. In addition to chaotic brightness variations combined with stochastic noise, the MOST data show a weakly defined cyclic signal with a period of about 1.5 days, which may correspond to the rotation of the star.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا