ﻻ يوجد ملخص باللغة العربية
Microwave reflectometry is a non-intrusive plasma diagnostic tool which is widely applied in many fusion devices. In 2014, the microwave reflectometry on Experimental Advanced Superconducting Tokamak (EAST) had been upgraded to measure plasma density profile and fluctuation, which covered the frequency range of Q-band (32-56 GHz), V-band (47-76 GHz) and W-band (71-110 GHz). This paper presented a dedicated data acquisition and control system (DAQC) to meet the measurement requirements of high accuracy and temporal resolution. The DAQC consisted of two control modules, which integrated arbitrary waveform generation block (AWG) and trigger processing block (TP), and two data acquisition modules (DAQ) that was implemented base on the PXIe platform from National Instruments (NI). All the performance parameters had satisfied the requirements of reflectometry. The actual performance will be further examined in the experiments of EAST in 2014.
During the last couple of decades, the use of arrays of bolometers has represented one of the leading techniques for the search for rare events. CUORE, an array of 988 TeO$_2$ bolometers that is taking data since April 2017 at the Laboratori Nazional
The Advanced LIGO detectors are sophisticated opto-mechanical devices. At the core of their operation is feedback control. The Advanced LIGO project developed a custom digital control and data acquisition system to handle the unique needs of this new
High energy physics experiments in KEK/Japan rush into over KHz trigger stage. Thus, we need a successor of the data acquisition(DAQ) system that replaces the CAMAC or FASTBUS systems. To meet these needs, we have developed a DAQ system which include
The XENON1T liquid xenon time projection chamber is the most sensitive detector built to date for the measurement of direct interactions of weakly interacting massive particles with normal matter. The data acquisition system (DAQ) is constructed from
The JSNS$^{2}$ (J-PARC Sterile Neutrino Search at J-PARC Spallation Neutron Source) experiment aims to search for neutrino oscillations over a 24 m short baseline at J-PARC. The JSNS$^{2}$ inner detector is filled with 17 tons of gadolinium(Gd)-loade