ترغب بنشر مسار تعليمي؟ اضغط هنا

Calibrating CHIME, A New Radio Interferometer to Probe Dark Energy

90   0   0.0 ( 0 )
 نشر من قبل Laura Newburgh
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Canadian Hydrogen Intensity Mapping Experiment (CHIME) is a transit interferometer currently being built at the Dominion Radio Astrophysical Observatory (DRAO) in Penticton, BC, Canada. We will use CHIME to map neutral hydrogen in the frequency range 400 -- 800,MHz over half of the sky, producing a measurement of baryon acoustic oscillations (BAO) at redshifts between 0.8 -- 2.5 to probe dark energy. We have deployed a pathfinder version of CHIME that will yield constraints on the BAO power spectrum and provide a test-bed for our calibration scheme. I will discuss the CHIME calibration requirements and describe instrumentation we are developing to meet these requirements.



قيم البحث

اقرأ أيضاً

The Hydrogen Intensity and Real-time Analysis eXperiment (HIRAX) is a new 400-800MHz radio interferometer under development for deployment in South Africa. HIRAX will comprise 1024 six meter parabolic dishes on a compact grid and will map most of the southern sky over the course of four years. HIRAX has two primary science goals: to constrain Dark Energy and measure structure at high redshift, and to study radio transients and pulsars. HIRAX will observe unresolved sources of neutral hydrogen via their redshifted 21-cm emission line (`hydrogen intensity mapping). The resulting maps of large-scale structure at redshifts 0.8-2.5 will be used to measure Baryon Acoustic Oscillations (BAO). HIRAX will improve upon current BAO measurements from galaxy surveys by observing a larger cosmological volume (larger in both survey area and redshift range) and by measuring BAO at higher redshift when the expansion of the universe transitioned to Dark Energy domination. HIRAX will complement CHIME, a hydrogen intensity mapping experiment in the Northern Hemisphere, by completing the sky coverage in the same redshift range. HIRAXs location in the Southern Hemisphere also allows a variety of cross-correlation measurements with large-scale structure surveys at many wavelengths. Daily maps of a few thousand square degrees of the Southern Hemisphere, encompassing much of the Milky Way galaxy, will also open new opportunities for discovering and monitoring radio transients. The HIRAX correlator will have the ability to rapidly and eXperimentciently detect transient events. This new data will shed light on the poorly understood nature of fast radio bursts (FRBs), enable pulsar monitoring to enhance long-wavelength gravitational wave searches, and provide a rich data set for new radio transient phenomena searches. This paper discusses the HIRAX instrument, science goals, and current status.
We have developed FFT beamforming techniques for the CHIME radio telescope, to search for and localize the astrophysical signals from Fast Radio Bursts (FRBs) over a large instantaneous field-of-view (FOV) while maintaining the full angular resolutio n of CHIME. We implement a hybrid beamforming pipeline in a GPU correlator, synthesizing 256 FFT-formed beams in the North-South direction by four formed beams along East-West via exact phasing, tiling a sky area of ~250 square degrees. A zero-padding approximation is employed to improve chromatic beam alignment across the wide bandwidth of 400 to 800 MHz. We up-channelize the data in order to achieve fine spectral resolution of $Delta u$=24 kHz and time cadence of 0.983 ms, desirable for detecting transient and dispersed signals such as those from FRBs.
Radio interferometer arrays with non-homogeneous element patterns are more difficult to calibrate compared to the more common homogeneous array. In particular, the non-homogeneity of the patterns has significant implications on the computational trac tability of evaluating the calibration solutions. We apply the A-stacking technique to this problem and explore the trade-off to be made between the calibration accuracy and computational complexity. Through simulations, we show that this technique can be favourably applied in the context of an SKA-Low station. We show that the minimum accuracy requirements can be met at a significantly reduced computational cost, and this cost can be reduced even further if the station calibration timescale is relaxed from 10 minutes to several hours. We demonstrate the impact antenna designs with differing levels of non-homogeneity have on the overall computational complexity in addition to some cases where calibration performs poorly.
121 - N. S. Kardashev 2013
RadioAstron is a Russian space based radio telescope with a ten meter dish in a highly elliptical orbit with an eight to nine day period. RadioAstron works together with Earth based radio telescopes to give interferometer baselines extending up to 35 0,000 km, more than an order of magnitude improvement over what is possible from earth based very long baseline interferometry. Operating in four frequency bands, 1.3, 6, 18, and 92 cm, the corresponding resolutions are 7, 35, 100, and 500 microarcseconds respectively in the four wavelength bands.
The Canadian Hydrogen Intensity Mapping Experiment (CHIME) is a novel transit radio telescope operating across the 400-800-MHz band. CHIME is comprised of four 20-m x 100-m semi-cylindrical paraboloid reflectors, each of which has 256 dual-polarizati on feeds suspended along its axis, giving it a >200 square degree field-of-view. This, combined with wide bandwidth, high sensitivity, and a powerful correlator makes CHIME an excellent instrument for the detection of Fast Radio Bursts (FRBs). The CHIME Fast Radio Burst Project (CHIME/FRB) will search beam-formed, high time-and frequency-resolution data in real time for FRBs in the CHIME field-of-view. Here we describe the CHIME/FRB backend, including the real-time FRB search and detection software pipeline as well as the planned offline analyses. We estimate a CHIME/FRB detection rate of 2-42 FRBs/sky/day normalizing to the rate estimated at 1.4-GHz by Vander Wiel et al. (2016). Likely science outcomes of CHIME/FRB are also discussed. CHIME/FRB is currently operational in a commissioning phase, with science operations expected to commence in the latter half of 2018.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا