ﻻ يوجد ملخص باللغة العربية
Radio interferometer arrays with non-homogeneous element patterns are more difficult to calibrate compared to the more common homogeneous array. In particular, the non-homogeneity of the patterns has significant implications on the computational tractability of evaluating the calibration solutions. We apply the A-stacking technique to this problem and explore the trade-off to be made between the calibration accuracy and computational complexity. Through simulations, we show that this technique can be favourably applied in the context of an SKA-Low station. We show that the minimum accuracy requirements can be met at a significantly reduced computational cost, and this cost can be reduced even further if the station calibration timescale is relaxed from 10 minutes to several hours. We demonstrate the impact antenna designs with differing levels of non-homogeneity have on the overall computational complexity in addition to some cases where calibration performs poorly.
The Canadian Hydrogen Intensity Mapping Experiment (CHIME) is a transit interferometer currently being built at the Dominion Radio Astrophysical Observatory (DRAO) in Penticton, BC, Canada. We will use CHIME to map neutral hydrogen in the frequency r
Radio interferometry most commonly involves antennas or antenna arrays of identical design. The identical antenna assumption leads to a convenient and useful mathematical simplification resulting in a scalar problem. An interesting variant to this is
We present an analysis of the optical response of lumped-element kinetic-inductance detector arrays, based on the NIKA2 1mm array. This array has a dual-polarization sensitive Hilbert inductor for directly absorbing incident photons. We present the o
The recent increase in well-localised fast radio bursts (FRBs) has facilitated in-depth studies of global FRB host properties, the source circumburst medium, and the potential impacts of these environments on the burst properties. The Australian Squa
RadioAstron is a Russian space based radio telescope with a ten meter dish in a highly elliptical orbit with an eight to nine day period. RadioAstron works together with Earth based radio telescopes to give interferometer baselines extending up to 35