ترغب بنشر مسار تعليمي؟ اضغط هنا

An assessment of the evidence from ATLAS3D for a variable initial mass function

50   0   0.0 ( 0 )
 نشر من قبل Bart Clauwens M.Sc.
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Bart Clauwens




اسأل ChatGPT حول البحث

The ATLAS3D Survey has reported evidence for a non-universal stellar initial mass function (IMF) for early type galaxies (ETGs) (Cappellari et al. 2012, 2013b,a). The IMF was constrained by comparing stellar mass measurements from kinematic data with those from spectral energy distribution (SED) fitting. Here we investigate possible effects of scatter in the reported stellar mass measurements and their potential impact on the IMF determination. We find that a trend of the IMF mismatch parameter with the kinematic mass to light ratio, comparable to the trend observed by Cappellari et al. (2012), could arise if the Gaussian errors of the kinematic mass determination are typically 30%. Without additional data, it is hard to separate between the option that the IMF has a true large intrinsic variation or the option that the errors in the determination are larger than anticipated. A correlation of the IMF with other properties would help to make this distinction, but no strong correlation has been found yet. The strongest correlation is with velocity dispersion. However, it has a large scatter and the correlation depends on sample selection and distance measurements. The correlation with velocity dispersion could be partly caused by the colour-dependent calibration of the surface brightness fluctuation distances of Tonry et al. (2001). We find that the K-band luminosity limited ATLAS3D Survey is incomplete for the highest M/L galaxies below 10^10.3 M_sun. There is a significant IMF - velocity dispersion trend for galaxies with SED masses above this limit, but no trend for galaxies with kinematic masses above this limit. We also find an IMF trend with distance, but no correlation between nearest neighbour ETGs, which excludes a large environmental dependence. Our findings do not rule out the reported IMF variations, but they suggest that further study is needed.

قيم البحث

اقرأ أيضاً

Many results in modern astrophysics rest on the notion that the Initial Mass Function (IMF) is universal. Our observations of HI selected galaxies in the light of H-alpha and the far-ultraviolet (FUV) challenge this notion. The flux ratio H-alpha/FUV from these two star formation tracers shows strong correlations with the surface-brightness in H-alpha and the R band: Low Surface Brightness (LSB) galaxies have lower ratios compared to High Surface Brightness galaxies and to expectations from equilibrium star formation models using commonly favored IMF parameters. Weaker but significant correlations of H-alpha/FUV with luminosity, rotational velocity and dynamical mass are found as well as a systematic trend with morphology. The correlated variations of H-alpha/FUV with other global parameters are thus part of the larger family of galaxy scaling relations. The H-alpha/FUV correlations can not be due to dust correction errors, while systematic variations in the star formation history can not explain the trends with both H-alpha and R surface brightness. LSB galaxies are unlikely to have a higher escape fraction of ionizing photons considering their high gas fraction, and color-magnitude diagrams. The most plausible explanation for the correlations are systematic variations of the upper mass limit and/or slope of the IMF at the upper end. We outline a scenario of pressure driving the correlations by setting the efficiency of the formation of the dense star clusters where the highest mass stars form. Our results imply that the star formation rate measured in a galaxy is highly sensitive to the tracer used in the measurement. A non-universal IMF also calls into question the interpretation of metal abundance patterns in dwarf galaxies and star formation histories derived from color magnitude diagrams. Abridged.
210 - I. Ferreras 2015
Spectroscopic analyses of gravity-sensitive line strengths give growing evidence towards an excess of low-mass stars in massive early-type galaxies (ETGs). Such a scenario requires a bottom-heavy initial mass function (IMF). However, strong constrain ts can be imposed if we take into account galactic chemical enrichment. We extend the analysis of Weidner et al. and consider the functional form of bottom-heavy IMFs used in recent works, where the high-mass end slope is kept fixed to the Salpeter value, and a free parameter is introduced to describe the slope at stellar masses below some pivot mass scale (M<MP=0.5Msun). We find that no such time-independent parameterisation is capable to reproduce the full set of constraints in the stellar populations of massive ETGs - resting on the assumption that the analysis of gravity-sensitive line strengths leads to a mass fraction at birth in stars with mass M<0.5Msun above 60%. Most notably, the large amount of metal-poor gas locked in low-mass stars during the early, strong phases of star formation results in average stellar metallicities [M/H]<-0.6, well below the solar value. The conclusions are unchanged if either the low-mass end cutoff, or the pivot mass are left as free parameters, strengthening the case for a time-dependent IMF.
We present predictions for the UV-to-mm extragalactic background light (EBL) from a recent version of the GALFORM semi-analytical model of galaxy formation which invokes a top-heavy stellar initial mass function (IMF) for galaxies undergoing dynamica lly-triggered bursts of star formation. We combine GALFORM with the GRASIL radiative transfer code for computing fully self-consistent UV-to-mm spectral energy distributions for each simulated galaxy, accounting for the absorption and re-emission of stellar radiation by interstellar dust. The predicted EBL is in near-perfect agreement with recent observations over the whole UV-to-mm spectrum, as is the evolution of the cosmic spectral energy distribution over the redshift range for which observations are available ($zlesssim1$). We show that approximately 90~per~cent of the EBL is produced at $z<2$ although this shifts to higher redshifts for sub-mm wavelengths. We assess whether the top-heavy IMF in starbursts is necessary in order to reproduce the EBL at the same time as other key observables, and find that variant models with a universal solar-neighborhood IMF display poorer agreement with EBL observations over the whole UV-to-mm spectrum and fail to match the counts of galaxies in the sub-mm.
We present a new approach in the study of the Initial Mass function (IMF) in external galaxies based on quasar microlensing observations. We use measurements of quasar microlensing magnifications in 24 lensed quasars to estimate the average mass of t he stellar population in the lens galaxies without any a priori assumption on the shape of the IMF. The estimated mean mass of the stars is $langle M rangle =0.16^{+0.05}_{-0.08} M_odot$ (at 68% confidence level). We use this average mass to put constraints into two important parameters characterizing the IMF of lens galaxies: the low-mass slope, $alpha_2$, and the low-mass cutoff, $M_{low}$. Combining these constraints with prior information based on lensing, stellar dynamics, and absorption spectral feature analysis, we calculate the posterior probability distribution for the parameters $M_{low}$ and $alpha_2$. We estimate values for the low-mass end slope of the IMF $langle alpha_2rangle=-2.6pm 0.9$ (heavier than that of the Milky Way) and for the low-mass cutoff $langle M_{low}rangle=0.13pm0.07$. These results are in good agreement with previous studies on these parameters and remain stable against the choice of different suitable priors.
Massive relic galaxies formed the bulk of their stellar component before z~2 and have remained unaltered since then. Therefore, they represent a unique opportunity to study in great detail the frozen stellar population properties of those galaxies th at populated the primitive Universe. We have combined optical to near-infrared line-strength indices in order to infer, out to 1.5 Reff, the IMF of the nearby relic massive galaxy NGC 1277. The IMF of this galaxy is bottom-heavy at all radii, with the fraction of low-mass stars being at least a factor of two larger than that found in the Milky Way. The excess of low-mass stars is present throughout the galaxy, while the velocity dispersion profile shows a strong decrease with radius. This behaviour suggests that local velocity dispersion is not the only driver of the observed IMF variations seen among nearby early-type galaxies. In addition, the excess of low-mass stars shown in NGC 1277 could reflect the effect on the IMF of dramatically different and intense star formation processes at z~2, compared to the less extreme conditions observed in the local Universe.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا