ﻻ يوجد ملخص باللغة العربية
Many results in modern astrophysics rest on the notion that the Initial Mass Function (IMF) is universal. Our observations of HI selected galaxies in the light of H-alpha and the far-ultraviolet (FUV) challenge this notion. The flux ratio H-alpha/FUV from these two star formation tracers shows strong correlations with the surface-brightness in H-alpha and the R band: Low Surface Brightness (LSB) galaxies have lower ratios compared to High Surface Brightness galaxies and to expectations from equilibrium star formation models using commonly favored IMF parameters. Weaker but significant correlations of H-alpha/FUV with luminosity, rotational velocity and dynamical mass are found as well as a systematic trend with morphology. The correlated variations of H-alpha/FUV with other global parameters are thus part of the larger family of galaxy scaling relations. The H-alpha/FUV correlations can not be due to dust correction errors, while systematic variations in the star formation history can not explain the trends with both H-alpha and R surface brightness. LSB galaxies are unlikely to have a higher escape fraction of ionizing photons considering their high gas fraction, and color-magnitude diagrams. The most plausible explanation for the correlations are systematic variations of the upper mass limit and/or slope of the IMF at the upper end. We outline a scenario of pressure driving the correlations by setting the efficiency of the formation of the dense star clusters where the highest mass stars form. Our results imply that the star formation rate measured in a galaxy is highly sensitive to the tracer used in the measurement. A non-universal IMF also calls into question the interpretation of metal abundance patterns in dwarf galaxies and star formation histories derived from color magnitude diagrams. Abridged.
The characteristic mass that sets the peak of the stellar initial mass function (IMF) is closely linked to the thermodynamic behaviour of interstellar gas, which controls how gas fragments as it collapses under gravity. As the Universe has grown in m
Magnetic fields play an important role for the formation of stars in both local and high-redshift galaxies. Recent studies of dynamo amplification in the first dark matter haloes suggest that significant magnetic fields were likely present during the
We study how an observationally-motivated, metallicity-dependent initial mass function (IMF) affects the feedback budget and observables of an ultra-faint dwarf galaxy. We model the evolution of a low-mass ($approx 8 , times , 10^{8} , rm M_{odot}$)
Using the Oxford Short Wavelength Integral Field specTrograph (SWIFT), we trace radial variations of initial mass function (IMF) sensitive absorption features of three galaxies in the Coma cluster. We obtain resolved spectroscopy of the central 5kpc
We have undertaken the largest systematic study of the high-mass stellar initial mass function (IMF) to date using the optical color-magnitude diagrams (CMDs) of 85 resolved, young (4 Myr < t < 25 Myr), intermediate mass star clusters (10^3-10^4 Msun