ﻻ يوجد ملخص باللغة العربية
Massive relic galaxies formed the bulk of their stellar component before z~2 and have remained unaltered since then. Therefore, they represent a unique opportunity to study in great detail the frozen stellar population properties of those galaxies that populated the primitive Universe. We have combined optical to near-infrared line-strength indices in order to infer, out to 1.5 Reff, the IMF of the nearby relic massive galaxy NGC 1277. The IMF of this galaxy is bottom-heavy at all radii, with the fraction of low-mass stars being at least a factor of two larger than that found in the Milky Way. The excess of low-mass stars is present throughout the galaxy, while the velocity dispersion profile shows a strong decrease with radius. This behaviour suggests that local velocity dispersion is not the only driver of the observed IMF variations seen among nearby early-type galaxies. In addition, the excess of low-mass stars shown in NGC 1277 could reflect the effect on the IMF of dramatically different and intense star formation processes at z~2, compared to the less extreme conditions observed in the local Universe.
The initial mass function (IMF) is an essential tool with which to study star formation processes. We have initiated the photometric survey of young open clusters in the Galaxy, from which the stellar IMFs are obtained in a homogeneous way. A total o
The stellar initial mass function (IMF) regulates the baryonic cycle within galaxies, and is a key ingredient to translate observations into physical quantities. Although for decades it was assumed to be universal, there is now growing observational
Spectroscopic analyses of gravity-sensitive line strengths give growing evidence towards an excess of low-mass stars in massive early-type galaxies (ETGs). Such a scenario requires a bottom-heavy initial mass function (IMF). However, strong constrain
In this paper, we present a new derivation of the shape and evolution of the integrated galaxy-wide initial mass function (IGIMF), incorporating explicitly the effects of cosmic rays (CRs) as regulators of the chemical and thermal state of the gas in
In this paper we investigate whether the stellar initial mass function of early-type galaxies depends on their host environment. To this purpose, we have selected a sample of early-type galaxies from the SPIDER catalogue, characterized their environm