ﻻ يوجد ملخص باللغة العربية
Within 40 years of the detection of the first extrasolar X-ray source in 1962,NASAs Chandra X-ray Observatory has achieved an increase in sensitivity of 10 orders of magnitude, comparable to the gain in going from naked-eye observations to the most powerful optical telescopes over the past 400 years. Chandra is unique in its capabilities for producing sub-arcsecond X-ray images with 100-200 eV energy resolution for energies in the range 0.08<E<10 keV, locating X-ray sources to high precision, detecting extremely faint sources, and obtaining high resolution spectra of selected cosmic phenomena. The extended Chandra mission provides a long observing baseline with stable and well-calibrated instruments, enabling temporal studies over time-scales from milliseconds to years. In this report we present a selection of highlights that illustrate how observations using Chandra, sometimes alone, but often in conjunction with other telescopes, have deepened, and in some instances revolutionized, our understanding of topics as diverse as protoplanetary nebulae; massive stars; supernova explosions; pulsar wind nebulae; the superfluid interior of neutron stars; accretion flows around black holes; the growth of supermassive black holes and their role in the regulation of star formation and growth of galaxies; impacts of collisions, mergers, and feedback on growth and evolution of groups and clusters of galaxies; and properties of dark matter and dark energy.
The Pierre Auger Observatory is the worlds largest cosmic ray observatory. Our current exposure reaches nearly 40,000 km$^2$ str and provides us with an unprecedented quality data set. The performance and stability of the detectors and their enhancem
The High Altitude Water Cherenkov (HAWC) Gamma-Ray Observatory was completed this year at a 4100-meter site on the flank of the Sierra Negra volcano in Mexico. HAWC is a water Cherenkov ground array with the capability to distinguish 100 GeV - 100 Te
I review the operational capabilities of the Chandra X-ray Observatory, including some of the spectacular results obtained by the general observer community. A natural theme of this talk is that Chandra is revealing outflows of great quantities of en
The thermal evolution of young neutron stars (NSs) reflects the neutrino emission properties of their cores. Heinke et al. (2010) measured a 3.6+/-0.6% decay in the surface temperature of the Cassiopeia A (Cas A) NS between 2000 and 2009, using archi
Northern auroral regions of Earth were imaged with energetic photons in the 0.1-10 keV range using the High-Resolution Camera (HRC-I) aboard the Chandra X-ray Observatory at 10 epochs (each ~20 min duration) between mid-December 2003 and mid-April 20