ترغب بنشر مسار تعليمي؟ اضغط هنا

Evidence for a nematic component to the Hidden Order parameter in URu2Si2 from differential elastoresistance measurements

55   0   0.0 ( 0 )
 نشر من قبل Maxwell Shapiro
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Measurements of the differential elastoresistance of URu$_2$Si$_2$ reveal that the fluctuations associated with the 17 K Hidden Order phase transition have a nematic component. Approaching the Hidden Order phase transition from above, the nematic susceptibility abruptly changes sign, indicating that while the Hidden Order phase has a nematic component, it breaks additional symmetries.

قيم البحث

اقرأ أيضاً

Novel electronic states resulting from entangled spin and orbital degrees of freedom are hallmarks of strongly correlated f-electron systems. A spectacular example is the so-called hidden-order phase transition in the heavy-electron metal URu2Si2, wh ich is characterized by the huge amount of entropy lost at T_{HO}=17.5K. However, no evidence of magnetic/structural phase transition has been found below T_{HO} so far. The origin of the hidden-order phase transition has been a long-standing mystery in condensed matter physics. Here, based on a first-principles theoretical approach, we examine the complete set of multipole correlations allowed in this material. The results uncover that the hidden-order parameter is a rank-5 multipole (dotriacontapole) order with nematic E^- symmetry, which exhibits staggered pseudospin moments along the [110] direction. This naturally provides comprehensive explanations of all key features in the hidden-order phase including anisotropic magnetic excitations, nearly degenerate antiferromagnetic-ordered state, and spontaneous rotational-symmetry breaking.
72 - O. O. Bernal 2001
We present new 29-Si NMR spectra in URu2Si2 for varying temperature T, and external field H. On lowering T, the systematics of the low-field lineshape and width reveal an extra component (lambda) to the linewidth below T_N ~ 17 K not observed previou sly. We find that lambda is magnetic-field independent and dominates the low-field lineshape for all orientations of H with respect to the tetragonal c axis. The behavior of lambda indicates a direct relationship between the 29-Si spin and the transition at T_N, but it is inconsistent with a coupling of the nuclei to static antiferromagnetic order/disorder of the U-spin magnetization. This leads us to conjecture that lambda is due to a coupling of 29-Si to the systems hidden-order parameter. A possible coupling mechanism involving charge degrees of freedom and indirect nuclear spin/spin interactions is proposed. We also propose further experiments to test for the existence of this coupling mechanism.
By means of neutron scattering we show that the high-temperature precursor to the hidden order state of the heavy fermion superconductor URu$_{2}$Si$_{2}$ exhibits heavily damped incommensurate paramagnons whose strong energy dispersion is very simil ar to that of the long-lived longitudinal f-spin excitations that appear below T$_{0}$. Since the underlying local f-exchange is preserved we expect only the f-d interactions to change across the phase transition and to cause the paramagnetic damping. The damping exhibits single-ion behavior independent of wave vector and vanishes below the hidden order transition. We suggest that this arises from a transition from valence fluctuations to a hybridized f-d state below T$_{0}$. Here we present evidence that the itinerant excitations, like those in chromium, are due to Fermi surface nesting of hole and electron pockets so that the hidden order phase likely originates from a Fermi-surface instability. We identify wave vectors that span nested regions of a band calculation and that match the neutron spin crossover from incommensurate to commensurate on approach to the hidden order phase.
In the hidden order of URu2Si2 the resistivity at very low temperature shows no T^2 behavior above the transition to superconductivity. However, when entering the antiferromagnetic phase, the Fermi liquid behavior is recovered. We discuss the change of the inelastic term when entering the AF phase with pressure considering the temperature dependence of the Grueneisen parameter at ambient pressure and the influence of superconductivity by an extrapolation of high field data.
Simultaneous neutron-scattering and thermal expansion measurements on the heavy-fermion superconductor URu2Si2 under hydrostatic pressure of 0.67 GPa have been performed in order to detect the successive paramagnetic, hidden order, and large moment a ntiferromagnetic phases on cooling. The temperature dependence of the sharp low energy excitation at the wavevector Q_0=(100) shows that this excitation is clearly a signature of the hidden order state. In the antiferromagnetic phase, this collective mode disappears. The higher energy excitation at the incommensurate wavevector Q_1=(1.4,0,0) persists in the antiferromagnetic phase but increases in energy. The collapse of the inelastic neutron scattering at Q_0 coincides with the previous observation of the disappearance of superconductivity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا