ﻻ يوجد ملخص باللغة العربية
Simultaneous neutron-scattering and thermal expansion measurements on the heavy-fermion superconductor URu2Si2 under hydrostatic pressure of 0.67 GPa have been performed in order to detect the successive paramagnetic, hidden order, and large moment antiferromagnetic phases on cooling. The temperature dependence of the sharp low energy excitation at the wavevector Q_0=(100) shows that this excitation is clearly a signature of the hidden order state. In the antiferromagnetic phase, this collective mode disappears. The higher energy excitation at the incommensurate wavevector Q_1=(1.4,0,0) persists in the antiferromagnetic phase but increases in energy. The collapse of the inelastic neutron scattering at Q_0 coincides with the previous observation of the disappearance of superconductivity.
New inelastic neutron scattering experiments have been performed on URu2Si2 with special focus on the response at Q0=(1,0,0), which is a clear signature of the hidden order (HO) phase of the compound. With polarized inelastic neutron experiments, it
Solids with strong electron correlations generally develop exotic phases of electron matter at low temperatures. Among such systems, the heavy-fermion semi-metal URu2Si2 presents an enigmatic transition at To = 17.5 K to a `hidden order state whose o
Since the 1985 discovery of the phase transition at $T_{rm HO}=17.5$ K in the heavy-fermion metal URu$_2$Si$_2$, neither symmetry change in the crystal structure nor magnetic ordering have been observed, which makes this hidden order enigmatic. Some
In the hidden order of URu2Si2 the resistivity at very low temperature shows no T^2 behavior above the transition to superconductivity. However, when entering the antiferromagnetic phase, the Fermi liquid behavior is recovered. We discuss the change
We report angle-resolved photoemission spectroscopy (ARPES) experiments probing deep into the hidden order (HO) state of URu2Si2, utilizing tunable photon energies with sufficient energy and momentum resolution to detect the near Fermi surface (FS) b