ﻻ يوجد ملخص باللغة العربية
By means of neutron scattering we show that the high-temperature precursor to the hidden order state of the heavy fermion superconductor URu$_{2}$Si$_{2}$ exhibits heavily damped incommensurate paramagnons whose strong energy dispersion is very similar to that of the long-lived longitudinal f-spin excitations that appear below T$_{0}$. Since the underlying local f-exchange is preserved we expect only the f-d interactions to change across the phase transition and to cause the paramagnetic damping. The damping exhibits single-ion behavior independent of wave vector and vanishes below the hidden order transition. We suggest that this arises from a transition from valence fluctuations to a hybridized f-d state below T$_{0}$. Here we present evidence that the itinerant excitations, like those in chromium, are due to Fermi surface nesting of hole and electron pockets so that the hidden order phase likely originates from a Fermi-surface instability. We identify wave vectors that span nested regions of a band calculation and that match the neutron spin crossover from incommensurate to commensurate on approach to the hidden order phase.
The term hidden order refers to an as yet unidentified form of broken-symmetry order parameter that is presumed to exist in the strongly correlated electron system URu2Si2 on the basis of the reported similarity of the heat capacity at its phase tran
Solids with strong electron correlations generally develop exotic phases of electron matter at low temperatures. Among such systems, the heavy-fermion semi-metal URu2Si2 presents an enigmatic transition at To = 17.5 K to a `hidden order state whose o
URu2Si2 is one of the most enigmatic strongly-correlated-electron systems and offers a fertile testing ground for new concepts in condensed matter science. In spite of >30 years of intense research, no consensus on the order parameter of its low-temp
Since the 1985 discovery of the phase transition at $T_{rm HO}=17.5$ K in the heavy-fermion metal URu$_2$Si$_2$, neither symmetry change in the crystal structure nor magnetic ordering have been observed, which makes this hidden order enigmatic. Some
To elucidate the underlying nature of the hidden order (HO) state in heavy-fermion compound URu2Si2, we measure electrical transport properties of ultraclean crystals in a high field/low temperature regime. Unlike previous studies, the present system