ﻻ يوجد ملخص باللغة العربية
We show that for those lattices of Voronois first kind with known obtuse superbasis, a closest lattice point can be computed in $O(n^4)$ operations where $n$ is the dimension of the lattice. To achieve this a series of relevant lattice vectors that converges to a closest lattice point is found. We show that the series converges after at most $n$ terms. Each vector in the series can be efficiently computed in $O(n^3)$ operations using an algorithm to compute a minimum cut in an undirected flow network.
We consider the problem of finding the closest lattice point to a vector in n-dimensional Euclidean space when each component of the vector is available at a distinct node in a network. Our objectives are (i) minimize the communication cost and (ii)
Permutation polynomials have many applications in finite fields theory, coding theory, cryptography, combinatorial design, communication theory, and so on. Permutation binomials of the form $x^{r}(x^{q-1}+a)$ over $mathbb{F}_{q^2}$ have been studied
We consider the closest lattice point problem in a distributed network setting and study the communication cost and the error probability for computing an approximate nearest lattice point, using the nearest-plane algorithm, due to Babai. Two distinc
The lattice $A_n^*$ is an important lattice because of its covering properties in low dimensions. Clarkson cite{Clarkson1999:Anstar} described an algorithm to compute the nearest lattice point in $A_n^*$ that requires $O(nlog{n})$ arithmetic operatio
The paper studies a class of three user Gaussian interference channels. A new layered lattice coding scheme is introduced as a transmission strategy. The use of lattice codes allows for an alignment of the interference observed at each receiver. The