ﻻ يوجد ملخص باللغة العربية
We consider the closest lattice point problem in a distributed network setting and study the communication cost and the error probability for computing an approximate nearest lattice point, using the nearest-plane algorithm, due to Babai. Two distinct communication models, centralized and interactive, are considered. The importance of proper basis selection is addressed. Assuming a reduced basis for a two-dimensional lattice, we determine the approximation error of the nearest plane algorithm. The communication cost for determining the Babai point, or equivalently, for constructing the rectangular nearest-plane partition, is calculated in the interactive setting. For the centralized model, an algorithm is presented for reducing the communication cost of the nearest plane algorithm in an arbitrary number of dimensions.
We consider the problem of finding the closest lattice point to a vector in n-dimensional Euclidean space when each component of the vector is available at a distinct node in a network. Our objectives are (i) minimize the communication cost and (ii)
The lattice $A_n^*$ is an important lattice because of its covering properties in low dimensions. Clarkson cite{Clarkson1999:Anstar} described an algorithm to compute the nearest lattice point in $A_n^*$ that requires $O(nlog{n})$ arithmetic operatio
We present a communication-efficient distributed protocol for computing the Babai point, an approximate nearest point for a random vector ${bf X}inmathbb{R}^n$ in a given lattice. We show that the protocol is optimal in the sense that it minimizes th
The Coxeter lattices, which we denote $A_{n/m}$, are a family of lattices containing many of the important lattices in low dimensions. This includes $A_n$, $E_7$, $E_8$ and their duals $A_n^*$, $E_7^*$ and $E_8^*$. We consider the problem of finding
We consider an energy-harvesting communication system where a transmitter powered by an exogenous energy arrival process and equipped with a finite battery of size $B_{max}$ communicates over a discrete-time AWGN channel. We first concentrate on a si