ﻻ يوجد ملخص باللغة العربية
Motivated by recent experiments, we study the relaxation dynamics and thermalization in the one-dimensional Bose-Hubbard model induced by a global interaction quench. Specifically, we start from an initial state that has exactly one boson per site and is the ground state of a system with infinitely strong repulsive interactions at unit filling. Using exact diagonalization and the density matrix renormalization group method, we compute the time dependence of such observables as the multiple occupancy and the momentum distribution function. Typically, the relaxation to stationary values occurs over just a few tunneling times. The stationary values are identical to the so-called diagonal ensemble on the system sizes accessible to our numerical methods and we further observe that the micro-canonical ensemble describes the steady state of many observables reasonably well for small and intermediate interaction strength. The expectation values of observables in the canonical ensemble agree quantitatively with the time averages obtained from the quench at small interaction strengths, and qualitatively provide a good description of steady-state values even in parameter regimes where the micro-canonical ensemble is not applicable due to finite-size effects. We discuss our numerical results in the framework of the eigenstate thermalization hypothesis. Moreover, we also observe that the diagonal and the canonical ensemble are practically identical for our initial conditions already on the level of their respective energy distributions for small interaction strengths. Finally, we discuss implications of our results for the interpretation of a recent sudden expansion experiment [Phys. Rev. Lett. 110, 205301 (2013)], in which the same interaction quench was realized.
By exploring a phase space hydrodynamics description of one-dimensional free Fermi gas, we discuss how systems settle down to steady states described by the generalized Gibbs ensembles through quantum quenches. We investigate time evolutions of the F
By calculating correlation functions for the Lieb-Liniger model based on the algebraic Bethe ansatz method, we conduct a finite-size scaling analysis of the eigenstate thermalization hypothesis (ETH) which is considered to be a possible mechanism of
We consider a quantum quench of the trap frequency in a system of bosons interacting through an inverse-square potential and confined in a harmonic trap (the harmonic Calogero model). We determine exactly the initial state in terms of the post-quench
We numerically investigate 1D Bose-Hubbard chains with onsite disorder by means of exact diagonalization. A primary focus of our work is on characterizing Fock-space localization in this model from the single-particle perspective. For this purpose, w
We compute the phase diagram of the one-dimensional Bose-Hubbard model with a quasi-periodic potential by means of the density-matrix renormalization group technique. This model describes the physics of cold atoms loaded in an optical lattice in the