ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum quench and thermalization of one-dimensional Fermi gas via phase space hydrodynamics

143   0   0.0 ( 0 )
 نشر من قبل Takeshi Morita
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

By exploring a phase space hydrodynamics description of one-dimensional free Fermi gas, we discuss how systems settle down to steady states described by the generalized Gibbs ensembles through quantum quenches. We investigate time evolutions of the Fermions which are trapped in external potentials or a circle for a variety of initial conditions and quench protocols. We analytically compute local observables such as particle density and show that they always exhibit power law relaxation at late times. We find a simple rule which determines the power law exponent. Our findings are, in principle, observable in experiments in an one dimensional free Fermi gas or Tonks gas (Bose gas with infinite repulsion).



قيم البحث

اقرأ أيضاً

231 - S. Sorg , L. Vidmar , L. Pollet 2014
Motivated by recent experiments, we study the relaxation dynamics and thermalization in the one-dimensional Bose-Hubbard model induced by a global interaction quench. Specifically, we start from an initial state that has exactly one boson per site an d is the ground state of a system with infinitely strong repulsive interactions at unit filling. Using exact diagonalization and the density matrix renormalization group method, we compute the time dependence of such observables as the multiple occupancy and the momentum distribution function. Typically, the relaxation to stationary values occurs over just a few tunneling times. The stationary values are identical to the so-called diagonal ensemble on the system sizes accessible to our numerical methods and we further observe that the micro-canonical ensemble describes the steady state of many observables reasonably well for small and intermediate interaction strength. The expectation values of observables in the canonical ensemble agree quantitatively with the time averages obtained from the quench at small interaction strengths, and qualitatively provide a good description of steady-state values even in parameter regimes where the micro-canonical ensemble is not applicable due to finite-size effects. We discuss our numerical results in the framework of the eigenstate thermalization hypothesis. Moreover, we also observe that the diagonal and the canonical ensemble are practically identical for our initial conditions already on the level of their respective energy distributions for small interaction strengths. Finally, we discuss implications of our results for the interpretation of a recent sudden expansion experiment [Phys. Rev. Lett. 110, 205301 (2013)], in which the same interaction quench was realized.
We revisit early suggestions to observe spin-charge separation (SCS) in cold-atom settings {in the time domain} by studying one-dimensional repulsive Fermi gases in a harmonic potential, where pulse perturbations are initially created at the center o f the trap. We analyze the subsequent evolution using generalized hydrodynamics (GHD), which provides an exact description, at large space-time scales, for arbitrary temperature $T$, particle density, and interactions. At $T=0$ and vanishing magnetic field, we find that, after a nontrivial transient regime, spin and charge dynamically decouple up to perturbatively small corrections which we quantify. In this limit, our results can be understood based on a simple phase-space hydrodynamic picture. At finite temperature, we solve numerically the GHD equations, showing that for low $T>0$ effects of SCS survive and {characterize} explicitly the value of $T$ for which the two distinguishable excitations melt.
By calculating correlation functions for the Lieb-Liniger model based on the algebraic Bethe ansatz method, we conduct a finite-size scaling analysis of the eigenstate thermalization hypothesis (ETH) which is considered to be a possible mechanism of thermalization in isolated quantum systems. We find that the ETH in the weak sense holds in the thermodynamic limit even for an integrable system although it does not hold in the strong sense. Based on the result of the finite-size scaling analysis, we compare the contribution of the weak ETH to thermalization with that of yet another thermalization mechanism, the typicality, and show that the former gives only a logarithmic correction to the latter.
The theory of generalized hydrodynamics (GHD) was recently developed as a new tool for the study of inhomogeneous time evolution in many-body interacting systems with infinitely many conserved charges. In this letter, we show that it supersedes the w idely used conventional hydrodynamics (CHD) of one-dimensional Bose gases. We illustrate this by studying nonlinear sound waves emanating from initial density accumulations in the Lieb-Liniger model. We show that, at zero temperature and in the absence of shocks, GHD reduces to CHD, thus for the first time justifying its use from purely hydrodynamic principles. We show that sharp profiles, which appear in finite times in CHD, immediately dissolve into a higher hierarchy of reductions of GHD, with no sustained shock. CHD thereon fails to capture the correct hydrodynamics. We establish the correct hydrodynamic equations, which are finite-dimensional reductions of GHD characterized by multiple, disjoint Fermi seas. We further verify that at nonzero temperature, CHD fails at all nonzero times. Finally, we numerically confirm the emergence of hydrodynamics at zero temperature by comparing its predictions with a full quantum simulation performed using the NRG-TSA-ABACUS algorithm. The analysis is performed in the full interaction range, and is not restricted to either weak- or strong-repulsion regimes.
We provide a pure state formulation for hydrodynamic dynamics of isolated quantum many-body systems. A pure state describing quantum systems in local thermal equilibrium is constructed, which we call a local thermal pure quantum ($ell$TPQ) state. We show that the thermodynamic functional and the expectation values of local operators (including a real-time correlation function) calculated from the $ell$TPQ state converge to those from a local Gibbs ensemble in the large fluid-cell limit. As a numerical demonstration, we investigate a one-dimensional spin chain and observe the hydrodynamic relaxation obeying the Fouriers law. We further prove the second law of thermodynamics and the quantum fluctuation theorem, which are also validated numerically. The $ell$TPQ formulation gives a useful theoretical basis to describe the emergent hydrodynamic behavior of quantum many-body systems furnished with a numerical efficiency, being applicable to both the non-relativistic and relativistic regimes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا