ترغب بنشر مسار تعليمي؟ اضغط هنا

Changing Computing Paradigms Towards Power Efficiency

57   0   0.0 ( 0 )
 نشر من قبل Pavel Klav\\'ik
 تاريخ النشر 2014
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Power awareness is fast becoming immensely important in computing, ranging from the traditional High Performance Computing applications, to the new generation of data centric workloads. In this work we describe our efforts towards a power efficient computing paradigm that combines low precision and high precision arithmetic. We showcase our ideas for the widely used kernel of solving systems of linear equations that finds numerous applications in scientific and engineering disciplines as well as in large scale data analytics, statistics and machine learning. Towards this goal we developed tools for the seamless power profiling of applications at a fine grain level. In addition, we verify here previous work on post FLOPS/Watt metrics and show that these can shed much more light in the power/energy profile of important applications.


قيم البحث

اقرأ أيضاً

We present a new package Theta.jl for computing with the Riemann theta function. It is implemented in Julia and offers accurate numerical evaluation of theta functions with characteristics and their derivatives of arbitrary order. Our package is opti mized for multiple evaluations of theta functions for the same Riemann matrix, in small dimensions. As an application, we report on experimental approaches to the Schottky problem in genus five.
293 - Bruno Grenet 2015
In this paper, we report on an implementation in the free software Mathemagix of lacunary factorization algorithms, distributed as a library called Lacunaryx. These algorithms take as input a polynomial in sparse representation, that is as a list of nonzero monomials, and an integer $d$, and compute its irreducible degree-$le d$ factors. The complexity of these algorithms is polynomial in the sparse size of the input polynomial and $d$.
SciPy is an open source scientific computing library for the Python programming language. SciPy 1.0 was released in late 2017, about 16 years after the original version 0.1 release. SciPy has become a de facto standard for leveraging scientific algor ithms in the Python programming language, with more than 600 unique code contributors, thousands of dependent packages, over 100,000 dependent repositories, and millions of downloads per year. This includes usage of SciPy in almost half of all machine learning projects on GitHub, and usage by high profile projects including LIGO gravitational wave analysis and creation of the first-ever image of a black hole (M87). The library includes functionality spanning clustering, Fourier transforms, integration, interpolation, file I/O, linear algebra, image processing, orthogonal distance regression, minimization algorithms, signal processing, sparse matrix handling, computational geometry, and statistics. In this work, we provide an overview of the capabilities and development practices of the SciPy library and highlight some recent technical developments.
In this paper, we develop software for decomposing sparse tensors that is portable to and performant on a variety of multicore, manycore, and GPU computing architectures. The result is a single code whose performance matches optimized architecture-sp ecific implementations. The key to a portable approach is to determine multiple levels of parallelism that can be mapped in different ways to different architectures, and we explain how to do this for the matricized tensor times Khatri-Rao product (MTTKRP) which is the key kernel in canonical polyadic tensor decomposition. Our implementation leverages the Kokkos framework, which enables a single code to achieve high performance across multiple architectures that differ in how they approach fine-grained parallelism. We also introduce a new construct for portable thread-local arrays, which we call compile-time polymorphic arrays. Not only are the specifics of our approaches and implementation interesting for tuning tensor computations, but they also provide a roadmap for developing other portable high-performance codes. As a last step in optimizing performance, we modify the MTTKRP algorithm itself to do a permuted traversal of tensor nonzeros to reduce atomic-write contention. We test the performance of our implementation on 16- and 68-core Intel CPUs and the K80 and P100 NVIDIA GPUs, showing that we are competitive with state-of-the-art architecture-specific codes while having the advantage of being able to run on a variety of architectures.
289 - Dan Gordon 2009
Linear systems with large differences between coefficients (discontinuous coefficients) arise in many cases in which partial differential equations(PDEs) model physical phenomena involving heterogeneous media. The standard approach to solving such pr oblems is to use domain decomposition techniques, with domain boundaries conforming to the boundaries between the different media. This approach can be difficult to implement when the geometry of the domain boundaries is complicated or the grid is unstructured. This work examines the simple preconditioning technique of scaling the equations by dividing each equation by the Lp-norm of its coefficients. This preconditioning is called geometric scaling (GS). It has long been known that diagonal scaling can be useful in improving convergence, but there is no study on the general usefulness of this approach for discontinuous coefficients. GS was tested on several nonsymmetric linear systems with discontinuous coefficients derived from convection-diffusion elliptic PDEs with small to moderate convection terms. It is shown that GS improved the convergence properties of restarted GMRES and Bi-CGSTAB, with and without the ILUT preconditioner. GS was also shown to improve the distribution of the eigenvalues by reducing their concentration around the origin very significantly.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا