ﻻ يوجد ملخص باللغة العربية
In this paper, we develop software for decomposing sparse tensors that is portable to and performant on a variety of multicore, manycore, and GPU computing architectures. The result is a single code whose performance matches optimized architecture-specific implementations. The key to a portable approach is to determine multiple levels of parallelism that can be mapped in different ways to different architectures, and we explain how to do this for the matricized tensor times Khatri-Rao product (MTTKRP) which is the key kernel in canonical polyadic tensor decomposition. Our implementation leverages the Kokkos framework, which enables a single code to achieve high performance across multiple architectures that differ in how they approach fine-grained parallelism. We also introduce a new construct for portable thread-local arrays, which we call compile-time polymorphic arrays. Not only are the specifics of our approaches and implementation interesting for tuning tensor computations, but they also provide a roadmap for developing other portable high-performance codes. As a last step in optimizing performance, we modify the MTTKRP algorithm itself to do a permuted traversal of tensor nonzeros to reduce atomic-write contention. We test the performance of our implementation on 16- and 68-core Intel CPUs and the K80 and P100 NVIDIA GPUs, showing that we are competitive with state-of-the-art architecture-specific codes while having the advantage of being able to run on a variety of architectures.
Tensor Train decomposition is used across many branches of machine learning. We present T3F -- a library for Tensor Train decomposition based on TensorFlow. T3F supports GPU execution, batch processing, automatic differentiation, and versatile functi
Our goal is compression of massive-scale grid-structured data, such as the multi-terabyte output of a high-fidelity computational simulation. For such data sets, we have developed a new software package called TuckerMPI, a parallel C++/MPI software p
Tensors (also commonly seen as multi-linear operators or as multi-dimensional arrays) are ubiquitous in scientific computing and in data science, and so are the software efforts for tensor operations. Particularly in recent years, we have observed an
Quantifying simulation uncertainties is a critical component of rigorous predictive simulation. A key component of this is forward propagation of uncertainties in simulation input data to output quantities of interest. Typical approaches involve repe
Tensor decompositions such as the canonical format and the tensor train format have been widely utilized to reduce storage costs and operational complexities for high-dimensional data, achieving linear scaling with the input dimension instead of expo