ﻻ يوجد ملخص باللغة العربية
In this paper, we report on an implementation in the free software Mathemagix of lacunary factorization algorithms, distributed as a library called Lacunaryx. These algorithms take as input a polynomial in sparse representation, that is as a list of nonzero monomials, and an integer $d$, and compute its irreducible degree-$le d$ factors. The complexity of these algorithms is polynomial in the sparse size of the input polynomial and $d$.
In this paper, we present a new method for computing bounded-degree factors of lacunary multivariate polynomials. In particular for polynomials over number fields, we give a new algorithm that takes as input a multivariate polynomial f in lacunary re
We present a new algorithm for the computation of the irreducible factors of degree at most $d$, with multiplicity, of multivariate lacunary polynomials over fields of characteristic zero. The algorithm reduces this computation to the computation of
We present a deterministic algorithm which computes the multilinear factors of multivariate lacunary polynomials over number fields. Its complexity is polynomial in $ell^n$ where $ell$ is the lacunary size of the input polynomial and $n$ its number o
Given a zero-dimensional ideal I in a polynomial ring, many computations start by finding univariate polynomials in I. Searching for a univariate polynomial in I is a particular case of considering the minimal polynomial of an element in P/I. It is w
Given a black box function to evaluate an unknown rational polynomial f in Q[x] at points modulo a prime p, we exhibit algorithms to compute the representation of the polynomial in the sparsest shifted power basis. That is, we determine the sparsity