ترغب بنشر مسار تعليمي؟ اضغط هنا

High temperature heat treatment of B precursor and P.I.T. process optimization to increase Jc performances of MgB2-based conductor

49   0   0.0 ( 0 )
 نشر من قبل Maurizio Vignolo
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Promising results reported in our previous works led us to think that production of B powder plays a crucial role in MgB2 synthesis. A new method for boron preparation has been developed in our laboratory. This particular process is based on magnesiothermic reaction (Moissan process) with the addition of an initial step that gives boron powder with nano-metric grain size. In this paper we report our efforts regarding optimization of PIT method for these nanometric powders and the resolution of problems previously highlighted such as the difficulty in powder packaging and the high friction phenomena occurring during cold working. This increases cracking during the tape and wire manufacturing leading to its failure. Packaging problems are related to the amorphous nature of boron synthesized in our laboratory, so a crystallization treatment was applied to improve crystallinity of B powder. To prevent excessive friction phenomena we synthesized non-stoichiometric MgB2 and using magnesium as lubricant. Our goal is the Jc improvement, but a global physical-chemical characterization was also made to analyze the improvement given by our treatments: this characterization includes X-ray diffraction, resistivity vs. temperature measurement, SEM image, besides magnetic and transport Jc measurements.

قيم البحث

اقرأ أيضاً

MoSi2 doped MgB2 tapes with different doping levels were prepared through the in-situ powder-in-tube method using Fe as the sheath material. Effect of MoSi2 doping on the MgB2/Fe tapes was investigated. It is found that the highest JC value was achie ved in the 2.5 at.% doped samples, more than a factor of 4 higher compared to the undoped tapes at 4.2 K, 10 T, then further increasing the doping ratio caused a reduction of JC. Moreover, all doped tapes exhibited improved magnetic field dependence of Jc. The enhancement of JC-B properties in MoSi2 doped MgB2 tapes is attributed to good grain linkage and the introduction of effective flux pining centers with the doping.
The use of MgB2 in superconducting applications still awaits for the development of a MgB2-based material where both current-carrying performance and critical magnetic field are optimized simultaneously. We achieved this by doping MgB2 with double-wa ll carbon nanotubes (DWCNT) as a source of carbon in polycrystalline samples. The optimum nominal DWCNT content for increasing the critical current density, Jc is in the range 2.5-10%at depending on field and temperature. Record values of the upper critical field, Hc2(4K) = 41.9 T (with extrapolated Hc2(0) ~ 44.4 T) are reached in a bulk sample with 10%at DWCNT content. The measured Hc2 vs T in all samples are successfully described using a theoretical model for a two-gap superconductor in the dirty limit first proposed by Gurevich et al.
A strong effect of sample size on magnetic Jc(H) was observed for bulk MgB2 when Jc is obtained directly from the critical state model. Thus obtained zero-field Jc (Jc0) decreases strongly with the sample size, attaining a constant value for the samp les larger than a few millimetres. On the other hand, the irreversibility field (Hirr) defined at Jc = 100 A/cm2 increases with the sample size. The decrease of Jc0 is described in terms of voids in the bulk MgB2 samples and superconducting screening around the cells of superconducting material between these voids (35 micro-m), because of concentration of the current in the narrow bridges connecting the cells. For samples larger than a few millimetres, the value of magnetic Jc is in agreement with the transport Jc and it is restricted by the voids. The critical state model is not suitable for obtaining Jc for small bulk MgB2. The increase of Hirr with the sample size is an artefact of defining Hirr by the value of Jc at which an additional superconducting screening on 1mm scale dominates Dm.
The effect of nanoscale-SiC doping of MgB2 was investigated using transport and magnetic measurements. It was found that there is a clear correlation between the critical temperature Tc, the resistivity r, the residual resistivity ratio, RRR = R(300K )/R(40K), the irreversibility field H* and the alloying state in the samples. SiC-doping introduced many nano-scale precipitates, provoking an increase of r(40K) from 1 mW-cm (RRR = 15) for the clean limit sample to 300 mW-cm (RRR = 1.75) for the SiC-doped sample, leading to significant enhancement of Hc2 and H* with only minor effect on Tc. EELS analysis revealed a number of nano-scale impurity phases: Mg2Si, MgO, MgB4, BOx, SixByOz, BC and unreacted SiC in the doped sample. TEM study showed an extensive domain structure of 2-4nm domains induced by SiC doping. The Jc for the 10% nano-SiC doped sample increased substantially at all fields and temperatures compared to the undoped samples, due to the strong increase in Hc2 and H* produced by SiC doping.
In this paper we report a new synthesis route to produce boron powders characterized as being amorphous and having very fine particle size. This route has been developed to improve the performances of superconducting MgB2 powders, which can be direct ly synthesized from this nano-structured boron precursor by following the ex-situ or the in-situ P.I.T. method during the manufacturing of tapes, wires and cables. All the procedure steps are explained and the chemical-physical characterization of the boron powder, using x-ray diffraction (Xrd), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques, is reported. Furthermore, a comparison with commercial boron is given. Preliminary results of the magnetic and electrical characterization, such as the critical temperature (TC) and the transport critical current density (JC t), for the MgB2 tape are reported and compared with the tape prepared with commercial boron.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا