ترغب بنشر مسار تعليمي؟ اضغط هنا

The effect of sample size on field dependence of Jc for MgB2 superconductor

183   0   0.0 ( 0 )
 نشر من قبل Joseph Horvat
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A strong effect of sample size on magnetic Jc(H) was observed for bulk MgB2 when Jc is obtained directly from the critical state model. Thus obtained zero-field Jc (Jc0) decreases strongly with the sample size, attaining a constant value for the samples larger than a few millimetres. On the other hand, the irreversibility field (Hirr) defined at Jc = 100 A/cm2 increases with the sample size. The decrease of Jc0 is described in terms of voids in the bulk MgB2 samples and superconducting screening around the cells of superconducting material between these voids (35 micro-m), because of concentration of the current in the narrow bridges connecting the cells. For samples larger than a few millimetres, the value of magnetic Jc is in agreement with the transport Jc and it is restricted by the voids. The critical state model is not suitable for obtaining Jc for small bulk MgB2. The increase of Hirr with the sample size is an artefact of defining Hirr by the value of Jc at which an additional superconducting screening on 1mm scale dominates Dm.



قيم البحث

اقرأ أيضاً

Systematic ac susceptibility measurements have been performed on a MgB$_2$ bulk sample. We demonstrate that the flux creep activation energy is a nonlinear function of the current density $U(j)propto j^{-0.2}$, indicating a nonlogarithmic relaxation of the current density in this material. The dependence of the activation energy on the magnetic field is determined to be a power law $U(B)propto B^{-1.33}$, showing a steep decline in the activation energy with the magnetic field, which accounts for the steep drop in the critical current density with magnetic field that is observed in MgB$_2$. The irreversibility field is also found to be rather low, therefore, the pinning properties of this new material will need to be enhanced for practical applications.
Measurements of the critical current density (Jc) by magnetization and the upper critical field (Hc2) by magnetoresistance have been performed for hafnium-doped MgB2. There has been a remarkable enhancement of Jc as compared to that by ion irradiatio n without any appreciable decrease in Tc, which is beneficial from the point of view of applications. The irreversibility line extracted from Jc shows an upward shift. In addition, there has been an increase in the upper critical field which indicates that Hf partially substitutes for Mg. Hyperfine interaction parameters obtained from time differential perturbed angular correlation (TDPAC) measurements revealed the formation of HfB and HfB2 phases along with the substitution of Hf. A possible explanation is given for the role of these species in the enhancement of Jc in MgB2 superconductor.
MoSi2 doped MgB2 tapes with different doping levels were prepared through the in-situ powder-in-tube method using Fe as the sheath material. Effect of MoSi2 doping on the MgB2/Fe tapes was investigated. It is found that the highest JC value was achie ved in the 2.5 at.% doped samples, more than a factor of 4 higher compared to the undoped tapes at 4.2 K, 10 T, then further increasing the doping ratio caused a reduction of JC. Moreover, all doped tapes exhibited improved magnetic field dependence of Jc. The enhancement of JC-B properties in MoSi2 doped MgB2 tapes is attributed to good grain linkage and the introduction of effective flux pining centers with the doping.
Polycrystalline MgB2-xCx samples with x=0.05, 0.1, 0.2, 0.3, 0.4 nano-particle carbon powder were prepared using an in-situ reaction method under well controlled conditions to limit the extent of C substitution. The phases, lattice parameters, micros tructures, superconductivity and flux pinning were characterized by XRD, TEM, and magnetic measurements. It was found that both the a-axis lattice parameter and the Tc decreased monotonically with increasing doping level. For the sample doped with the highest nominal composition of x=0.4 the Tc dropped only 2.7K. The nano-C-doped samples showed an improved field dependence of the Jc compared with the undoped sample over a wide temperature range. The enhancement by C-doping is similar to that of Si-doping but not as strong as for nano-SiC doped MgB2. X-ray diffraction results indicate that C reacted with Mg to form nano-size Mg2C3 and MgB2C2 particles. Nano-particle inclusions and substitution, both observed by transmission electron microscopy, are proposed to be responsible for the enhancement of flux pinning in high fields.
We report on significant flux pinning enhancement in MgB2/Fe tapes that has been easily obtained by a simple and cheap route using acetone as both an efficient ball-milling medium and liquid additive through the in situ method. Results showed that th e highly reactive C released from the decomposition of the acetone substituted into B sites, accompanied by the grain refinement effect due to the acetone doping. At 4.2 K, the transport Jc for the 5 wt % acetone doped tapes sintered at 700C reached up to 2.4x10^4 A/cm^2 at 10 T, which is even higher than that of the nano-C added samples heated at 900C.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا