ﻻ يوجد ملخص باللغة العربية
In this paper we report a new synthesis route to produce boron powders characterized as being amorphous and having very fine particle size. This route has been developed to improve the performances of superconducting MgB2 powders, which can be directly synthesized from this nano-structured boron precursor by following the ex-situ or the in-situ P.I.T. method during the manufacturing of tapes, wires and cables. All the procedure steps are explained and the chemical-physical characterization of the boron powder, using x-ray diffraction (Xrd), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques, is reported. Furthermore, a comparison with commercial boron is given. Preliminary results of the magnetic and electrical characterization, such as the critical temperature (TC) and the transport critical current density (JC t), for the MgB2 tape are reported and compared with the tape prepared with commercial boron.
Very recently, the tetragonal BiOCuS was synthesized and declared as a new superconducting system with Fe-oxypnictide - related structure. Here, based on first-principle FLAPW-GGA calculations, the structural parameters, electronic bands picture, den
We report the growth and properties of epitaxial MgB2 thin films on (0001) Al2O3 substrates. The MgB2 thin films were prepared by depositing boron films via RF magnetron sputtering, followed by a post-deposition anneal at 850C in magnesium vapor. X-r
MoSi2 doped MgB2 tapes with different doping levels were prepared through the in-situ powder-in-tube method using Fe as the sheath material. Effect of MoSi2 doping on the MgB2/Fe tapes was investigated. It is found that the highest JC value was achie
We have first succeefully synthesized the sodium cobalt oxyhydrate superconductors using KMnO4 as a de-intercalating and oxidizing agent. It is a novel route to form the superconductive phase of NaxCoO2.yH2O without resorting to the commonly used Br2
Precursor MgB2 thin films were prepared on sapphire substrates by magnetron sputtering. Influence of ex-situ annealing process on superconducting MgB2 thin films roughness is discussed. Optimized annealing process of MgB precursor thin films in vacuu