ترغب بنشر مسار تعليمي؟ اضغط هنا

PT-symmetric microring lasers: Self-adapting broadband mode-selective resonators

94   0   0.0 ( 0 )
 نشر من قبل Matthias Heinrich
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate experimentally that stable single longitudinal mode operation can be readily achieved in PT-symmetric arrangements of coupled microring resonators. Whereas any active resonator is in principle capable of displaying single-wavelength operation, selective breaking of PT-symmetry can be utilized to systematically enhance the maximum achievable gain of this mode, even if a large number of competing longitudinal or transverse resonator modes fall within the amplification bandwidth of the inhomogeneously broadened active medium. This concept is robust with respect to fabrication tolerances, and its mode selectivity is established without the need for additional components or specifically designed filters. Our results may pave the way for a new generation of versatile cavities lasing at a desired longitudinal resonance. Along these lines, traditionally highly multi-moded microring resonator configurations can be fashioned to suppress all but one longitudinal mode.

قيم البحث

اقرأ أيضاً

92 - Zhiyuan Gu , Nan Zhang , Quan Lyu 2015
Recently, the coexistence of parity-time (PT) symmetric laser and absorber has gained tremendous research attention. While the PT symmetric absorber has been observed in microwave metamaterials, the experimental demonstration of PT symmetric laser is still absent. Here we experimentally study PT-symmetric laser absorber in stripe waveguide. Using the concept of PT symmetry to exploit the light amplification and absorption, PT-symmetric laser absorbers have been successfully obtained. Different from the single-mode PT symmetric lasers, the PT-symmetric stripe lasers have been experimentally confirmed by comparing the relative wavelength positions and mode spacing under different pumping conditions. When the waveguide is half pumped, the mode spacing is doubled and the lasing wavelengths shift to the center of every two initial lasing modes. All these observations are consistent with the theoretical predictions and confirm the PT-symmetry breaking well.
We present a systematic analysis of the stationary regimes of nonlinear parity-time(PT) symmetric laser composed of two coupled fiber cavities. We find that power-dependent nonlinear phase shifters broaden regions of existence of both PT-symmetric an d PT-broken modes, and can facilitate transitions between modes of different types. We show the existence of non-stationary regimes and demonstrate an ambiguity of the transition process for some of the unstable states. We also identify the presence of higher-order stationary modes, which return to the initial state periodically after a certain number of round-trips.
Non-Hermitian exceptional points (EPs) represent a special type of degeneracy where not only the eigenvalues coalesce, but also the eigenstates tend to collapse on each other. Recent studies have shown that in the presence of an EP, light-matter inte ractions are profoundly modified, leading to a host of novel optical phenomena ranging from enhanced sensitivity to chiral light transport. As of now, however, in order to stabilize a system at the vicinity of an exceptional point, its related parameters must be carefully tuned and/or continuously controlled. To overcome this limitation, here we introduce a new family of broadband exceptional points based on unidirectional coupling, implemented by incorporating an Sshaped waveguide in a microring cavity. In active settings, the resulting unidirectionality exhibits unprecedented resilience to perturbations, thus providing a robust and tunable approach for directly generating beams with distinct orbital angular momentum (OAM). This work could open up new possibilities for manipulating OAM degrees of freedom in applications pertaining to telecommunications and quantum computing, while at the same time may expand the notions of non-Hermiticity in the orbital angular momentum space.
87 - Angel Paredes , David Novoa , 2014
We study the effects of the quantum vacuum on the propagation of a Gaussian laser beam in vacuum. By means of a double perturbative expansion in paraxiality and quantum vacuum terms, we provide analytical expressions for the self-induced transverse m ode mixing, rotation of polarization, and third harmonic generarion. We discuss the possibility of searching for the self-induced, spatially dependent phase shift of a multipetawatt laser pulse, which may allow the testing of quantum electrodynamics and new physics models, such as Born-Infeld theory and models involving new minicharged or axion-like particles, in parametric regions that have not yet been explored in laboratory experiments.
94 - Qiang Luo , Chen Yang , Ru Zhang 2021
Lithium niobate on insulator (LNOI), regarded as an important candidate platform for optical integration due to its excellent nonlinear, electro-optic and other physical properties, has become a research hotspot. Light source, as an essential compone nt for integrated optical system, is urgently needed. In this paper, we reported the realization of 1550-nm band on-chip LNOI microlasers based on erbium-doped LNOI ring cavities with loaded quality factors higher than one million, which were fabricated by using electron beam lithography and inductively coupled plasma reactive ion etching processes. These microlasers demonstrated a low pump threshold of ~20 {mu}W and stable performance under the pump of a 980-nm band continuous laser. Comb-like laser spectra spanning from 1510 nm to 1580 nm were observed in high pump power regime, which lays the foundation of the realization of pulsed laser and frequency combs on rare-earth ion doped LNOI platform. This work has effectively promoted the development of on-chip integrated active LNOI devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا