ﻻ يوجد ملخص باللغة العربية
We present a systematic analysis of the stationary regimes of nonlinear parity-time(PT) symmetric laser composed of two coupled fiber cavities. We find that power-dependent nonlinear phase shifters broaden regions of existence of both PT-symmetric and PT-broken modes, and can facilitate transitions between modes of different types. We show the existence of non-stationary regimes and demonstrate an ambiguity of the transition process for some of the unstable states. We also identify the presence of higher-order stationary modes, which return to the initial state periodically after a certain number of round-trips.
Recently, the coexistence of parity-time (PT) symmetric laser and absorber has gained tremendous research attention. While the PT symmetric absorber has been observed in microwave metamaterials, the experimental demonstration of PT symmetric laser is
We show that non-linear optical structures involving a balanced gain-loss profile, can act as unidirectional optical valves. This is made possible by exploiting the interplay between the fundamental symmetries of parity (P) and time (T), with optical
By rearrangements of waveguide arrays with gain and losses one can simulate transformations among parity-time (PT-) symmetric systems not affecting their pure real linear spectra. Subject to such transformations, however, the nonlinear properties of
A system of two coupled semiconductor-based resonators is studied when lasing around an exceptional point. We show that the presence of nonlinear saturation effects can have important ramifications on the transition behavior of this system. In sharp
The unique spectral behavior exhibited by a class of non-uniform Bragg periodic structures, namely chirped and apodized fiber Bragg gratings (FBGs) influenced by parity and time reversal ($mathcal{PT}$) symmetry, is presented. The interplay between t