ترغب بنشر مسار تعليمي؟ اضغط هنا

A Spitzer Survey for Dust in Type IIn Supernovae

205   0   0.0 ( 0 )
 نشر من قبل Ori Fox
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Ori D. Fox




اسأل ChatGPT حول البحث

Recent observations suggest that Type IIn supernovae (SNe IIn) may exhibit late-time (>100 days) infrared (IR) emission from warm dust more than other types of core-collapse SNe. Mid-IR observations, which span the peak of the thermal spectral energy distribution, provide useful constraints on the properties of the dust and, ultimately, the circumstellar environment, explosion mechanism, and progenitor system. Due to the low SN IIn rate (<10% of all core-collapse SNe), few IR observations exist for this subclass. The handful of isolated studies, however, show late-time IR emission from warm dust that, in some cases, extends for five or six years post-discovery. While previous Spitzer/IRAC surveys have searched for dust in SNe, none have targeted the Type IIn subclass. This article presents results from a warm Spitzer/IRAC survey of the positions of all 68 known SNe IIn within a distance of 250 Mpc between 1999 and 2008 that have remained unobserved by Spitzer more than 100 days post-discovery. The detection of late-time emission from ten targets (~15%) nearly doubles the database of existing mid-IR observations of SNe IIn. Although optical spectra show evidence for new dust formation in some cases, the data show that in most cases the likely origin of the mid-IR emission is pre-existing dust, which is continuously heated by optical emission generated by ongoing circumstellar interaction between the forward shock and circumstellar medium. Furthermore, an emerging trend suggests that these SNe decline at ~1000--2000 days post-discovery once the forward shock overruns the dust shell. The mass-loss rates associated with these dust shells are consistent with luminous blue variable (LBV) progenitors.



قيم البحث

اقرأ أيضاً

Supernova (SN) rates serve as an important probe of star-formation models and initial mass functions. Near-infrared seeing-limited ground-based surveys typically discover a factor of 3-10 fewer SNe than predicted from far-infrared (FIR) luminosities owing to sensitivity limitations arising from both a variable point-spread function (PSF) and high dust extinction in the nuclear regions of star-forming galaxies. This inconsistency has potential implications for our understanding of star-formation rates and massive-star evolution, particularly at higher redshifts, where star-forming galaxies are more common. To resolve this inconsistency, a successful SN survey in the local universe must be conducted at longer wavelengths and with a space-based telescope, which has a stable PSF to reduce the necessity for any subtraction algorithms and thus residuals. Here we report on a two-year Spitzer/IRAC 3.6 um survey for dust-extinguished SNe in the nuclear regions of forty luminous infrared galaxies (LIRGs) within 200 Mpc. The asymmetric Spitzer PSF results in worse than expected subtraction residuals when implementing standard template subtraction. Forward-modeling techniques improve our sensitivity by ~1.5 magnitudes. We report the detection of 9 SNe, five of which were not discovered by optical surveys. After adjusting our predicted rates to account for the sensitivity of our survey, we find that the number of detections is consistent with the models. While this search is nonetheless hampered by a difficult-to-model PSF and the relatively poor resolution of Spitzer, it will benefit from future missions, such as Roman Space Telescope and JWST, with higher resolution and more symmetric PSFs.
Type IIn supernovae (SNe IIn) are a relatively infrequently observed subclass of SNe whose photometric and spectroscopic properties are varied. A common thread among SNe IIn are the complex multiple-component hydrogen Balmer lines. Owing to the heter ogeneity of SNe IIn, online databases contain some outdated, erroneous, or even contradictory classifications. SN IIn classification is further complicated by SN impostors and contamination from underlying HII regions. We have compiled a catalogue of systematically classified nearby (redshift z < 0.02) SNe IIn using the Open Supernova Catalogue (OSC). We present spectral classifications for 115 objects previously classified as SNe IIn. Our classification is based upon results obtained by fitting multiple Gaussians to the H-alpha profiles. We compare classifications reported by the OSC and Transient Name Server (TNS) along with the best matched templates from SNID. We find that 28 objects have been misclassified as SNe IIn. TNS and OSC can be unreliable; they disagree on the classifications of 51 of the objects and contain a number of erroneous classifications. Furthermore, OSC and TNS hold misclassifications for 34 and twelve (respectively) of the transients we classify as SNe IIn. In total, we classify 87 SNe IIn. We highlight the importance of ensuring that online databases remain up to date when new or even contemporaneous data become available. Our work shows the great range of spectral properties and features that SNe IIn exhibit, which may be linked to multiple progenitor channels and environment diversity. We set out a classification sche me for SNe IIn based on the H-alpha profile which is not greatly affected by the inhomogeneity of SNe IIn.
In order to understand the contribution of core-collapse supernovae to the dust budget of the early universe, it is important to understand not only the mass of dust that can form in core-collapse supernovae but also the location and rate of dust for mation. SN 2005ip is of particular interest since dust has been inferred to have formed in both the ejecta and the post-shock region behind the radiative reverse shock. We have collated eight optical archival spectra that span the lifetime of SN 2005ip and we additionally present a new X-shooter optical-near-IR spectrum of SN 2005ip at 4075d post-discovery. Using the Monte Carlo line transfer code DAMOCLES, we have modelled the blueshifted broad and intermediate width H$alpha$, H$beta$ and He I lines from 48d to 4075d post-discovery using an ejecta dust model. We find that dust in the ejecta can account for the asymmetries observed in the broad and intermediate width H$alpha$, H$beta$ and He I line profiles at all epochs and that it is not necessary to invoke post-shock dust formation to explain the blueshifting observed in the intermediate width post-shock lines. Using a Bayesian approach, we have determined the evolution of the ejecta dust mass in SN 2005ip over 10 years presuming an ejecta dust model, with an increasing dust mass from ~10$^{-8}$ M$_{odot}$ at 48d to a current dust mass of $sim$0.1 M$_{odot}$.
The physical characteristics of dust formed in supernovae is poorly known. In this paper, we investigate the extinction properties of dust formed in the type IIn SN 2005ip. The observed light curves of SN 2005ip all exhibit a sudden drop around 50 da ys after discovery. This has been attributed to dust formation in the dense circumstellar medium. We modeled the intrinsic light curves in six optical bands, adopting a theoretical model for the luminosity evolution of supernovae interacting with their circumstellar material. From the difference between the observed and intrinsic light curves, we calculated extinction curves as a function of time. The total-to-selective extinction ratio, $R_V$, was determined from the extinction in the B and V bands. The resulting extinction, $A_V$, increases monotonically up to about 1 mag, 150 days after discovery. The inferred $R_V$ value also increases slightly with time, but appears constant in the range 4.5--8, beyond 100 days after discovery. The analysis confirms that dust is likely formed in SN 2005ip, starting about two months after explosion. The high value of $R_V$, that is, gray dust, suggests dust properties different from of the Milky Way. While this result hinges on the assumed theoretical intrinsic light curve evolution, it is encouraging that the fitted light curves are as expected for standard ejecta and circumstellar medium density structures.
The Type IIn supernovae (SNe IIn) have been found to be associated with significant amounts of dust. These core-collapse events are generally expected to be the final stage in the evolution of highly-massive stars, either while in an extreme red supe rgiant phase or during a luminous blue variable phase. Both evolutionary scenarios involve substantial pre-supernova mass loss. I have analyzed the SN IIn 1995N in MCG -02-38-017 (Arp 261), for which mid-infrared archival data obtained with the Spitzer Space Telescope in 2009 (~14.7 yr after explosion) and with the Wide-field Infrared Survey Explorer (WISE) in 2010 (~15.6--16.0 yr after explosion) reveal a luminous (~2e7 L_sun) source detected from 3.4 to 24 micron. These observations probe the circumstellar material, set up by pre-SN mass loss, around the progenitor star and indicate the presence of ~0.05--0.12 M_sun of pre-existing, cool dust at ~240 K. This is at least a factor ~10 lower than the dust mass required to be produced from SNe at high redshift, but the case of SN 1995N lends further evidence that highly massive stars could themselves be important sources of dust.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا