ﻻ يوجد ملخص باللغة العربية
We prove a conjecture of Etingof and the second author for hypertoric varieties, that the Poisson-de Rham homology of a unimodular hypertoric cone is isomorphic to the de Rham cohomology of its hypertoric resolution. More generally, we prove that this conjecture holds for an arbitrary conical variety admitting a symplectic resolution if and only if it holds in degree zero for all normal slices to symplectic leaves. The Poisson-de Rham homology of a Poisson cone inherits a second grading. In the hypertoric case, we compute the resulting 2-variable Poisson-de Rham-Poincare polynomial, and prove that it is equal to a specialization of an enrichment of the Tutte polynomial of a matroid that was introduced by Denham. We also compute this polynomial for S3-varieties of type A in terms of Kostka polynomials, modulo a previous conjecture of the first author, and we give a conjectural answer for nilpotent cones in arbitrary type, which we prove in rank less than or equal to 2.
We use the Beilinson $t$-structure on filtered complexes and the Hochschild-Kostant-Rosenberg theorem to construct filtrations on the negative cyclic and periodic cyclic homologies of a scheme $X$ with graded pieces given by the Hodge-completion of t
We show that the character variety for a $n$-punctured oriented surface has a natural Poisson structure.
We determine which nilpotent orbits in $E_6$ have normal closure and which do not. We also verify a conjecture about small representations in rings of functions on nilpotent orbit covers for type $E_6$.
Over any smooth algebraic variety over a $p$-adic local field $k$, we construct the de Rham comparison isomorphisms for the etale cohomology with partial compact support of de Rham $mathbb Z_p$-local systems, and show that they are compatible with Po
Let $mathcal{O}$ be a Richardson nilpotent orbit in a simple Lie algebra $mathfrak{g}$ over $mathbb C$, induced from a Levi subalgebra whose simple roots are orthogonal short roots. The main result of the paper is a description of a minimal set of ge