ترغب بنشر مسار تعليمي؟ اضغط هنا

Tuning a magnetic Feshbach resonance with spatially modulated laser light

119   0   0.0 ( 0 )
 نشر من قبل Yi-Cai Zhang
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We theoretically investigate the control of a magnetic Feshbach resonance using a bound-to-bound molecular transition driven by spatially modulated laser light. Due to the spatially periodic coupling between the ground and excited molecular states, there exists a band structure of bound states, which can uniquely be characterized by some extra bumps in radio-frequency spectroscopy. With the increasing of coupling strength, the series of bound states will cross zero energy and directly result in a number of scattering resonances, whose position and width can be conveniently tuned by the coupling strength of the laser light and the applied magnetic field (i.e., the detuning of the ground molecular state). In the presence of the modulated laser light, universal two-body bound states near zero-energy threshold still exist. However, compared with the case without modulation, the regime for such universal states is usually small. An unified formula which embodies the influence of the modulated coupling on the resonance width is given. The spatially modulated coupling also implies a local spatially varying interaction between atoms. Our work proposes a practical way of optically controlling interatomic interactions with high spatial resolution and negligible atomic loss.

قيم البحث

اقرأ أيضاً

94 - D.M. Bauer , M. Lettner , C. Vo 2009
The capability to tune the strength of the elastic interparticle interaction is crucial for many experiments with ultracold gases. Magnetic Feshbach resonances are a tool widely used for this purpose, but future experiments would benefit from additio nal flexibility such as spatial modulation of the interaction strength on short length scales. Optical Feshbach resonances offer this possibility in principle, but suffer from fast particle loss due to light-induced inelastic collisions. Here we show that light near-resonant with a molecular bound-to-bound transition can be used to shift the magnetic field at which a magnetic Feshbach resonance occurs. This makes it possible to tune the interaction strength with laser light and at the same time induce considerably less loss than an optical Feshbach resonance would do.
We theoretically evaluate the feasibility to form magnetically-tunable Feshbach molecules in collisions between fermionic $^6$Li atoms and bosonic metastable $^{174}$Yb($^3$P$_2$) atoms. In contrast to the well-studied alkali-metal atom collisions, c ollisions with meta-stable atoms are highly anisotropic. Our first-principle coupled-channel calculation of these collisions reveals the existence of broad Feshbach resonances due to the combined effect of anisotropic-molecular and atomic-hyperfine interactions. In order to fit our predictions to the specific positions of experimentally-observed broad resonance structures cite{Deep2015} we optimized the shape of the short-range potentials by direct least-square fitting. This allowed us to identify the dominant resonance by its leading angular momentum quantum numbers and describe the role of collisional anisotropy in the creation and broadening of this and other resonances.
We analyze the temporal response of the fluorescence light that is emitted from a dense gas of cold atoms driven by a laser. When the average interatomic distance is smaller than the wavelength of the photons scattered by the atoms, the system exhibi ts strong dipolar interactions and collective dissipation. We solve the exact dynamics of small systems with different geometries and show how these collective features are manifest in the scattered light properties such as the photon emission rate, the power spectrum and the second-order correlation function. By calculating these quantities beyond the weak driving limit, we make progress in understanding the signatures of collective behavior in these many-body systems. Furthermore, we clarify the role of disorder on the resonance fluorescence, of direct relevance for recent experimental efforts that aim at the exploration of many-body effects in dipole-dipole interacting gases of atoms.
We study the use of an optical Feshbach resonance to modify the p-wave interaction between ultracold polarized Yb-171 spin-1/2 fermions. A laser exciting two colliding atoms to the 1S_0 + 3P_1 channel can be detuned near a purely-long-range excited m olecular bound state. Such an exotic molecule has an inner turning point far from the chemical binding region and thus three-body-recombination in the Feshbach resonance will be highly suppressed in contrast to that typically seen in a ground state p-wave magnetic Feshbach resonance. We calculate the excited molecular bound-state spectrum using a multichannel integration of the Schr{o}dinger equation, including an external perturbation by a magnetic field. From the multichannel wave functions, we calculate the Feshbach resonance properties, including the modification of the elastic p-wave scattering volume and inelastic spontaneous scattering rate. The use of magnetic fields and selection rules for polarized light yields a highly controllable system. We apply this control to propose a toy model for three-color superfluidity in an optical lattice for spin-polarized Yb-171, where the three colors correspond to the three spatial orbitals of the first excited p-band. We calculate the conditions under which tunneling and on-site interactions are comparable, at which point quantum critical behavior is possible.
We demonstrate optical tuning of the scattering length in a Bose-Einstein condensate as predicted by Fedichev {em et al.} [Phys. Rev. Lett. {bf 77}, 2913 (1996)]. In our experiment atoms in a $^{87}$Rb condensate are exposed to laser light which is t uned close to the transition frequency to an excited molecular state. By controlling the power and detuning of the laser beam we can change the atomic scattering length over a wide range. In view of laser-driven atomic losses we use Bragg spectroscopy as a fast method to measure the scattering length of the atoms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا