ترغب بنشر مسار تعليمي؟ اضغط هنا

p-Wave Optical Feshbach Resonances in Yb-171

86   0   0.0 ( 0 )
 نشر من قبل Krittika Goyal
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the use of an optical Feshbach resonance to modify the p-wave interaction between ultracold polarized Yb-171 spin-1/2 fermions. A laser exciting two colliding atoms to the 1S_0 + 3P_1 channel can be detuned near a purely-long-range excited molecular bound state. Such an exotic molecule has an inner turning point far from the chemical binding region and thus three-body-recombination in the Feshbach resonance will be highly suppressed in contrast to that typically seen in a ground state p-wave magnetic Feshbach resonance. We calculate the excited molecular bound-state spectrum using a multichannel integration of the Schr{o}dinger equation, including an external perturbation by a magnetic field. From the multichannel wave functions, we calculate the Feshbach resonance properties, including the modification of the elastic p-wave scattering volume and inelastic spontaneous scattering rate. The use of magnetic fields and selection rules for polarized light yields a highly controllable system. We apply this control to propose a toy model for three-color superfluidity in an optical lattice for spin-polarized Yb-171, where the three colors correspond to the three spatial orbitals of the first excited p-band. We calculate the conditions under which tunneling and on-site interactions are comparable, at which point quantum critical behavior is possible.

قيم البحث

اقرأ أيضاً

We theoretically evaluate the feasibility to form magnetically-tunable Feshbach molecules in collisions between fermionic $^6$Li atoms and bosonic metastable $^{174}$Yb($^3$P$_2$) atoms. In contrast to the well-studied alkali-metal atom collisions, c ollisions with meta-stable atoms are highly anisotropic. Our first-principle coupled-channel calculation of these collisions reveals the existence of broad Feshbach resonances due to the combined effect of anisotropic-molecular and atomic-hyperfine interactions. In order to fit our predictions to the specific positions of experimentally-observed broad resonance structures cite{Deep2015} we optimized the shape of the short-range potentials by direct least-square fitting. This allowed us to identify the dominant resonance by its leading angular momentum quantum numbers and describe the role of collisional anisotropy in the creation and broadening of this and other resonances.
We demonstrate a p$-wave optical Feshbach resonance (OFR) using purely long-range molecular states of a fermionic isotope of ytterbium ^{171}Yb, following the proposition made by K. Goyal et al. [Phys. Rev. A 82, 062704 (2010)]. The p-wave OFR is cle arly observed as a modification of a photoassociation rate for atomic ensembles at about 5 micro-Kelvins. A scattering phase shift variation of delta eta=0.022 rad is observed with an atom loss rate coefficient K=28.0*10^{-12} cm^3/s.
We investigate magnetically tunable Feshbach resonances in ultracold collisions between ground-state Yb and Cs atoms, using coupled-channel calculations based on an interaction potential recently determined from photoassociation spectroscopy. We pred ict resonance positions and widths for all stable isotopes of Yb, together with resonance decay parameters where appropriate. The resonance patterns are richer and more complicated for fermionic Yb than for spin-zero isotopes, because there are additional level splittings and couplings due to scalar and tensorial Yb hyperfine interactions. We examine collisions involving Cs atoms in a variety of hyperfine states, and identify resonances that appear most promising for experimental observation and for magnetoassociation to form ultracold CsYb molecules.
We report on observations and modeling of interspecies magnetic Feshbach resonances in dilute ultracold mixtures of open-shell alkali-metal $^6$Li and closed-shell $^{173}$Yb atoms with temperatures just above quantum degeneracy for both fermionic sp ecies. Resonances are located by detecting magnetic-field-dependent atom loss due to three-body recombination. We resolve closely-located resonances that originate from a weak separation-dependent hyperfine coupling between the electronic spin of $^6$Li and the nuclear spin of $^{173}$Yb, and confirm their magnetic field spacing by ab initio electronic-structure calculations. Through quantitative comparisons of theoretical atom-loss profiles and experimental data at various temperatures between 1 $mu$K and 20 $mu$K, we show that three-body recombination in fermionic mixtures has a $p$-wave Wigner threshold behavior leading to characteristic asymmetric loss profiles. Such resonances can be applied towards the formation of ultracold doublet ground-state molecules and quantum simulation of superfluid $p$-wave pairing.
56 - J. Zhang 2004
We report the observation of three p-wave Feshbach resonances of $^6$Li atoms in the lowest hyperfine state $f=1/2$. The positions of the resonances are in good agreement with theory. We study the lifetime of the cloud in the vicinity of the Feshbach resonances and show that depending on the spin states, 2- or 3-body mechanisms are at play. In the case of dipolar losses, we observe a non-trivial temperature dependence that is well explained by a simple model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا