ترغب بنشر مسار تعليمي؟ اضغط هنا

RR Lyrae in XSTPS: The halo density profile in the North Galactic Cap

159   0   0.0 ( 0 )
 نشر من قبل Martin C. Smith
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a catalog of RR Lyrae stars (RRLs) observed by the Xuyi Schmidt Telescope Photometric Survey (XDSS). The area we consider is located in the North Galactic Cap, covering 376.75 sq deg at RA $approx$ 150 deg and Dec $approx$ 27 deg down to a magnitude limit of i $approx$ 19. Using the variability information afforded by the multi-epoch nature of our XDSS data, combined with colors from the Sloan Digital Sky Survey, we are able to identify candidate RRLs. We find 318 candidates, derive distances to them and estimate the detection efficiency. The majority of our candidates have more than 12 observations and for these we are able to calculate periods. These also allows us to estimate our contamination level, which we predict is between 30% to 40%. Finally we use the sample to probe the halo density profile in the 9-49 kpc range and find that it can be well fitted by a double power law. We find good agreement between this model and the models derived for the South Galactic Cap using the Watkins et al. (2009) and Sesar et al. (2010) RRL data-sets, after accounting for possible contamination in our data-set from Sagittarius stream members. We consider non-spherical double power law models of the halo density profile and again find agreement with literature data-sets, although we have limited power to constrain the flattening due to our small survey area. Much tighter constraints will be placed by current and future wide-area surveys, most notably ESAs astrometric Gaia mission. Our analysis demonstrates that surveys with a limited number of epochs can effectively be mined for RRLs. Our complete sample is provided as accompanying online material.



قيم البحث

اقرأ أيضاً

We characterize the spatial density of the Pan-STARRS1 (PS1) sample of RR Lyrae stars, to study the properties of the old Galactic stellar halo as traced by RRab stars. This sample of 44,403 sources spans Galactocentric radii of $0.55 ; mathrm{kpc} l eq R_{mathrm{gc}} leq 141 ; mathrm{kpc}$ with a distance precision of 3% and thus is able to trace the halo out to larger distances than most previous studies. After excising stars that are attributed to dense regions such as stellar streams, the Galactic disc and bulge as well as halo globular clusters, the sample contains ${sim}11,000$ sources within $20 ; mathrm{kpc} leq R_{mathrm{gc}} leq 131 ; mathrm{kpc}$. We then apply forward modeling using ellipsoidal stellar density models $rho(l,b,R_{mathrm{gc}})$ both with a constant and a radius-dependent halo flattening $q(R_{mathrm{gc}})$. Assuming constant flattening $q$, the distribution of the sources is reasonably well fit from $20 ; mathrm{kpc}$ to $131 ; mathrm{kpc}$ by a single power law with $n=4.40^{+0.05}_{-0.04}$ and $q=0.918^{+0.016}_{-0.014}$. The distance distribution is fit comparably well by an Einasto profile with $n=9.53^{+0.27}_{-0.28}$, an effective radius $r_{mathrm{eff}}=1.07 pm 0.10 ; mathrm{kpc}$ and a halo flattening of $q=0.923 pm 0.007$. If we allow for a radius-dependent flattening $q(R_{mathrm{gc}})$, we find evidence for a distinct flattening of $q{sim}0.8$ of the inner halo at ${sim} 25 ; mathrm{kpc}$. Additionally, we find that the south Galactic hemisphere is more flattened than the north Galactic hemisphere. The results of our work are largely consistent with many earlier results, e.g. cite{Watkins2009}, cite{Iorio2017}. We find that the stellar halo, as traced in RR Lyrae stars, exhibits a substantial number of further significant over- and underdensities, even after all known overdensities have been masked.
We show that tagging RR Lyrae stars according to their location in the period-amplitude diagram can be used to shed light on the genesis of the Galactic stellar halo. The mixture of RR Lyrae of ab type, separated into classes along the lines suggeste d by Oosterhoff, displays a strong and coherent evolution with Galactocentric radius. The change in the RR Lyrae composition appears to coincide with the break in the halos radial density profile at ~25 kpc. Using simple models of the stellar halo, we establish that at least three different types of accretion events are necessary to explain the observed RRab behavior. Given that there exists a correlation between the RRab class fraction and the total stellar content of a dwarf satellite, we hypothesize that the field halo RRab composition is controlled by the mass of the progenitor contributing the bulk of the stellar debris at the given radius. This idea is tested against a suite of cosmological zoom-in simulations of Milky Way-like stellar halo formation. Finally, we study some of the most prominent stellar streams in the Milky Way halo and demonstrate that their RRab class fractions follow the trends established previously.
The projected density distribution of type ab RR Lyrae (RRab) stars was characterised from the innermost regions of the Milky Way to the halo, with the aim of placing constraints on the Galaxys evolution. The compiled sample (N_RRab = 64,850) stems f rom fundamental mode RR Lyrae variables identified by the VVV, OGLE, and Gaia surveys. The distribution is well fitted by three power laws over three radial intervals. In the innermost region (R < 2.2 deg) the distribution follows Sigma_RRab[1] propto R ^(-0.94 +- 0.051), while in the external region the distribution adheres to Sigma_RRab[2] propto R^(-1.50 +- 0.019) for 2.2 deg< R <8.0 deg and Sigma_RRab[3] propto R ^(-2.43 +- 0.043) for 8.0 deg < R <30.0 deg. Conversely, the cumulative distribution of red clump (RC) giants exhibits a more concentrated distribution in the mean, but in the central R < 2.2 deg the RRab population is more peaked, whereas globular clusters (GCs) follow a density power law (Sigma_GCs propto R ^(-1.59 +- 0.060) for R<30.0 deg) similar to that of RRab stars, especially when considering a more metal-poor subsample ([Fe/H]<-1.1 dex). The main conclusion emerging from the analysis is that the RRab distribution favours the star cluster infall and merger scenario for creating an important fraction (>18 %) of the central Galactic region. The radii containing half of the populations (half populations radii) are R_H=6.8 deg (0.99 kpc), R_H =4.2 deg (0.61 kpc), and R_H =11.9 deg (1.75 kpc) for the RRab stars, RC giants, and GCs, respectively. Finally, merely 1% of the stars have been actually discovered in the innermost region (R < 35 pc) out of the expected (based on our considerations) total number of RRab therein: N sim 1,562. That deficit will be substantially ameliorated with future space missions like the Nancy Grace Roman Space Telescope (formerly WFIRST).
Most of known RR Lyraes are type ab RR Lyraes (RRLab), and they are the excellent tool to map the Milky Way and its substructures. We find that 1148 RRLab stars determined by Drake et al.(2013) have been observed by spectroscopic surveys of SDSS and LAMOST. We derived radial velocity dispersion, circular velocity and mass profile from 860 halo tracers in our paper I. Here, we present the stellar densities and radial velocity distributions of thick disk and halo of the Milky Way. The 288 RRLab stars located in the thick disk have the mean metallicity of [Fe/H]$=-1.02$. Three thick disk tracers have the radial velocity lower than 215 km $rm s^{-1}$. With 860 halo tracers which have a mean metallicity of [Fe/H]$=-1.33$, we find a double power-law of $n(r) propto r^{-2.8}$ and $n(r) propto r^{-4.8}$ with a break distance of 21 kpc to express the halo stellar density profile. The radial velocity dispersion at 50 kpc is around 78 km $rm s^{-1}$.
We present the analysis of 12227 type-ab RR Lyrae found among the 200 million public lightcurves in the Catalina Surveys Data Release 1 (CSDR1). These stars span the largest volume of the Milky Way ever surveyed with RR Lyrae, covering ~20,000 square degrees of the sky (0 < RA < 360, -22 < Dec < 65 deg) to heliocentric distances of up to 60kpc. Each of the RR Lyrae are observed between 60 and 419 times over a six-year period. Using period finding and Fourier fitting techniques we determine periods and apparent magnitudes for each source. We find that the periods at generally accurate to sigma = 0.002% by comparison with 2842 previously known RR Lyrae and 100 RR Lyrae observed in overlapping survey fields. We photometrically calibrate the light curves using 445 Landolt standard stars and show that the resulting magnitudes are accurate to ~0.05 mags using SDSS data for ~1000 blue horizontal branch stars and 7788 of the RR Lyrae. By combining Catalina photometry with SDSS spectroscopy, we analyze the radial velocity and metallicity distributions for > 1500 of the RR Lyrae. Using the accurate distances derived for the RR Lyrae, we show the paths of the Sagittarius tidal streams crossing the sky at heliocentric distances from 20 to 60 kpc. By selecting samples of Galactic halo RR Lyrae, we compare their velocity, metallicity, and distance with predictions from a recent detailed N-body model of the Sagittarius system. We find that there are some significant differences between the distances and structures predicted and our observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا